Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Восстановление многоядерных соединений

    Реакции восстановления (I—3) подавляются присутствием хлора в растворе. Наличие хлора препятствует также образованию многоядерных соединений. [c.29]

    В последующие годы закономерность трансвлияния, иногда мало обоснованно, была использована И. И. Черняевым для объяснения широкого круга вопросов, например, причин возникновения границы внутренней сферы , наличия и преобладания координационных чисел 4 и 6 [49], фактов существования и устойчивости простых (Нг, С1з, Ог), двойных и многоядерных соединений [70], а также амидирования внутрисферных аминов и процессов окисления—восстановления [71]. Полученные экспериментальные данные на примерах комплексных соединений Сг, Те, Ки, 08 определенно указывали, что этот удивительный эффект имеет место . Соединения углерода Черняев в этот период не считал каким-нибудь особым исключением из общей правильности . По его мнению, соединения углерода просто отличаются от комплексных соединений отсутствием внешней сферы и тем, что большое количество центральных и краевых атомов и их расположение по ломаной линии чересчур усложняет трансвлияние [68, стр. 153]. [c.52]


    Итак, при электровосстановлении сопряженных систем совершается процесс, который лишь формально может быть локализован на определенном участке молекулы. На самом же деле затрагивается вся система сопряженных связей. Наиболее характерно это для производных хинона, которые полярографически восстанавливаются до производных гидрохинона (с промежуточным образованием семихинонов в неводных средах). Разумеется, с той же точки зрения должны рассматриваться и полярографически активные ароматические многоядерные углеводороды, и енолят-анионы, и все другие соединения, у которых полярографически активная группа сопряжена с ароматическим кольцом или гетероциклом. Однако, если потенциал восстановления данной группы далек от потенциалов, необходимых для присоединения электрона к ароматическому углеводороду, то сопряжение с ароматическим циклом вызывает лишь понижение активной группы по сравнению с той же группой, присоединенной к алифатическому радикалу (соответственно меняется и механизм электровосстановления), но сам процесс электровосстановления не затрагивает я-связей цикла, так как для нарушения ароматического цикла требуется преодоление соответствующей энергии сопряжения. [c.89]

    Причины повышения. оптической плотности растворов роданидных соединений пятивалентного молибдена в присутствии ионов трехвалентного железа или двухвалентной меди пока не выяснены. Вероятно, усиление окраски растворов в этих случаях зависит от образования многоядерных комплексов, содержащих молибден, железо, (или медь) и роданид в молярном отношении Мо Ре(Си) = 1 1 [32а, 219]. Ионы трехвалентного железа влияют на окраску растворов молибден-роданидных соединений только при восстановлении посредством ЗпСЬ. Однако олово не входит в состав образующегося многоядерного соединения. Если вместо иона трехвалентного железа к первоначальному раствору был прибавлен ион двухвалентного железа (в виде соли [c.24]

    Научные исследования посвящены ароматическим, в частности многоядерным, соединениям. Показал (1866), что бензолеиновая кислота, полученная А. В. Г. Кольбе, содержит дигидробензольное ядро. Получил (1867) дигидрофта-левую кислоту и предложил правильную формулу фталевой кислоты. Совместно с К- Т. Либерманом получил (1868) антрацен восстановлением природного ализарина цинковой пылью. Они же впервые осуществили (1869) синтез ализарина из антрацена через броми-рование антрахинона и сплавление бромюра с поташем. Результаты этой работы послужили основой создания дешевого промыщленно-го способа производства ализарина (1869, совместно с Либерманом и Г. Каро), который прежде получали из корней марены. Указал на хромофорные свойства азогруппы. Доказал (1868) правильность формулы нафталина, предложенной Р. Л. К- Э. Эрленмейером. Установил (1869), что нафталин, антрацен и другие углеводороды с конденсированными ядрами следует относить к ароматическим соединениям. Совместно с Г. Каро открыл (1870) акридин. Выделил из каменноугольной смолы карбазол и фенантрен. Синтезировал (1872) фенантрен и определил его строение. Совместно с Ф. Ульманом [c.151]


    Фишер, Шрадер и Эргардт полагали, что многоядерные соединения образуются главным образом из гомологов бензола [120]. Нафталин, по их преддоложению, возникает из мелких осколков при разложении жирных соединений (подобно тому, как это рассматривал М. Бертло). А это явно противоречит утверждению самого же Фишера о том, что алифатические углеводороды превращаются в компоненты коксового газа. Немецкие химики предлагали и другой путь образования нафталина дезалкилирование производных нафталина и восстановление гомологов нафтола [162]. Однако, как считали уже в то время, маловероятно, чтобы эти соединения могли послужить основой для синтеза больших количеств нафталина в каменноугольной смоле. В самом деле, Глууд показал в своих опытах, что из фенолов полукоксовой смолы образуется лишь незначительное количество нафталина [166]. [c.84]

    Кубовые пигменты. Кубовые красители, широко применяемые в .рашении и при набивке рисунка на ткани, являются водонерастворимыми соединениями, способными переходить в растворимое состояние при щелочном восстановлении (кубовое крашение). На тканях они вновь превращаются в окисленную форму, давая широкую гамму исключительно стойких оттенков. Будучи различными по химическому составу, кубовые красители являются многоядерными соединениями такого же слоя ного строения, как и фталоцианиновые. В связи с тем, что они химически инертны к различным реагентам (за исключением восстановителей) и очень слабо взаи-модействуют с растворителями, были сделаны попытки использовать их в качестве пигментов. [c.211]

    Карбонилы могут бьть одн , двух- и многоядерными. Одноядерные карбонилы образуют -элементы с четным числом валентных электронов. Элементы с нечетным числом электронов образуют двухъядерные карбонилы со связью металл — металл (см. табл. 41). Обычно карбонилы металлов получают восстановлением их соответствующих соединений в присутствии СО. [c.602]

    Часто для восстановления кетонов применяют никель с другими металлами. Так, в случае гидрирования многоядерных ароматических кетонов, например 2-метилантрахинона, используют N1—Сг-катализа-тор при 120—250° и 20—300 атм [61]. В присутствии N1—Сг-катали-затора гидрируют р-алкилфенилкетоны. На никеле (из формиата) с добавками Се, А1, 7п, V и другие кетоны превращаются в соответствующие спирты [107]. Спирты из кетонов получены на Ш-катализаторах, промотированных Сг, 2п, А1, при Рн2=5—20 кг1см и 100°. Добавка Се к никелю повышает выход алканов из кетонов. В присутствии №— Мп- и N1—2п-катализаторов [108] выход вторичных спиртов несколько выше, чем предельных углеводородов [109] торий снижает выход спиртов. Высокоактивным для гидрирования карбонильных соединений оказался N1—2п-катализатор, приготовленный по методу [107] в нагретую на кипящей бане смесь, состоящую из гп-пыли (10 г) и дистиллированной воды (3 мл), при интенсивном перемешивании добавляют 10 мл кипящего раствора КЮ12-4Н20 (4,04 г). Выпавший осадок сразу же отсасывают на стеклянный фильтр, промывают горячей водой и в течение 15—20 мин при 50—60° обрабатывают 10%-ным раствором МаОН (160 мл), периодически перемешивая. Полученный катализатор содержал около 1 г № и 4,7 г Ъп. [c.318]

    При действии тиосульфата натрия на комплексные хлориды родия(П1) не удается получить однородных, химически чистых соединений. По-видимому, здесь происходит процесс восстановления родия из трехвалентного до двухвалентного состояния, но восстановление не проходит полностью и образуется смесь соединений неопределенного состава. Химически чистые комплексные соединения родия, содержащие тиосульфат, были получены [37] в виде этилендиаминтиосульфатных и аммиачнотиосульфатных соединений. Они имеют сложный состав многоядерных комплексов, в которых родий сохраняет свою первоначальную валентность три. Описание этих соединений отнесено в соответствующие главы аммиачных и этилендиаминовых производных (см. стр. 77, 136). [c.56]

    Подтверждением этой теории является почти полный параллелизм в способности соединений гидрироваться амальгамой натрия и присоединять натрий в условиях, когда отсутствуют вещества, вызывающие гидролиз. Шленк и Бергман [43] показали, что многоядерные ароматические соединения, такие, как дифенил, нафталин, фенантрен и антрацен, присоединяют щелочные металлы, причем легкость присоединения увеличивается в указанной последовательности. Полученные натрий- и литийорганические соединения при гидролизе дают дигидропроизводные. Перечисленные соединения восстанавливаются при соответствующих условиях амальгамами щелочных металлов до дигидропроизводных, что подтверждает справедливость теории Вильштеттера. Однако против этой теории имеется ряд серьезных возражений [44— 47]. Во-первых, установлено, что восстановление такими металлами, как кальций, алюминий,. риводит к тем же продуктам восстановления и, по-видимому, имеет тот же механизм, что и при действии натрия. Но трудно предположить, чтобы, например, кальций, восстанавливая нафталин до 1,4-дигидро-производного, присоединялся бы к нафталину в положение [c.121]


    Основными классами соединений, из которых получены л-элек-тронные ион-радикалы путем 1е-восстановления исходных молекул, являются углеводороды с сопряженными двойными связями [20], многоядерные ароматические углеводороды [21], ароматические карбонильные соединения (альдегиды, кетоны, дикетоны, производные кислот) [22], хиноны [23], ароматические нитросоединения [24—28], ароматические нитрилы [28], ряд гетероароматических соединений [23, 29] и т. д. Путем электроокисления получены катион-радикалы из фенолов, ароматических аминов, гидрохинонов, ароматических и гетероароматических углеводородов и др. [c.316]

    В соответствии с расширением области кубовых пигментов выдвинулся новый метод их использования в виде сернокислых эфиров дигидросоединений энольной природы о них уже было сказано при индиго. Таким соединениям кубовых многоядерных пигментов у нас присвоено название кубозол и.В производстве кубозолей введено теперь усовершенствование, состоящее в том, что восстановление пигмента не выделяется в самостоятельный процесс, а объединяется с ацилированием гидросоединения. [c.286]

    В п[ отивоположность методу окисления получение многоядерных комплексных соединений по методу восстановления совершенно не изучено. Можно привести только один пример образования двухвалентного соединения платины [c.319]


Смотреть страницы где упоминается термин Восстановление многоядерных соединений: [c.44]    [c.98]    [c.244]    [c.194]    [c.40]    [c.60]    [c.244]    [c.59]    [c.402]    [c.189]    [c.44]   
Новые методы препаративной органической химии (1950) -- [ c.238 , c.239 ]




ПОИСК





Смотрите так же термины и статьи:

Многоядерные соединения



© 2024 chem21.info Реклама на сайте