Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Внешняя наружная мембрана

    Предполагается, что ионы Н -остаются связанными с внешней поверхностью мембраны, сообщая ей положительный заряд, а электроны, перенесенные на внутреннюю поверхность, заряжают ес отрицательно. В результате между двумя поверхностями мембраны возникает разность потенциалов. Передвижение протонов водорода (рнс. 44) с наружной стороны мембраны к внутренней рассматривается как процесс, сопряженный с присоединением остатков неорганического фосфата к АДФ и образованием АТФ. [c.264]


    Функции клеточной стенки прокариот. Клеточная стенка прокариот выполняет разнообразные функции механически заш иш ает клетку от воздействий окружаюш,ей среды, обеспечивает поддержание ее внешней формы, дает возможность клетке суш,ествовать в гипотонических растворах. В первую очередь, в этом заслуга пептидогликана. Структурная дифференцировка клеточной стенки у грамотрицательных прокариот, приведшая к формированию дополнительного слоя в виде наружной мембраны, значительно расширила круг функций клеточной стенки. Прежде всего это связано с проблемами проницаемости и избирательного транспорта веществ в клетку. Наружная мембрана имеет специфические и неспецифические каналы (диффузионные поры) для пассивного транспорта веществ и ионов, необходимых клетке, т. е. осуществляет функции дополнительного клеточного барьера (основной — ЦПМ). Она препятствует проникновению в клетку токсических веществ, что находит отражение в большей устойчивости грамотрицательных прокариот (сравнительно с грамположительными) к действию некоторых ядов, химических веществ, ферментов и антибиотиков. Появление у грамотрицательных прокариот дополнительной мембраны в составе клеточной стенки фактически привело к созданию обособленной полости (периплазматического пространства), отграниченной от цитоплазмы и внешней среды специфическими мембранами и несущей важную [c.19]

    Периплазматическое пространство, куда погружен пептидогликановый слой, заполнено раствором, в состав которого входят специфические белки, олигосахариды и неорганические молекулы. Периплазматические белки представлены двумя типами транспортными белками и гидролитическими ферментами. Транспортные белки — это переносчики, связывающиеся с соответствующими субстратами внешней среды и транспортирующие их от наружной мембраны к цитоплазматической. [c.37]

    Клетки тканей животных не имеют обычно клеточной стенки. У клеток растений и многих микроорганизмов, напротив, имеется развитая многослойная клеточная стенка, находящаяся с наружной стороны от клеточной мембраны. Внутренние слои такой клеточной стенки служат конструкционным материалом, обеспечивающим достаточную жесткость формы клетки и устойчивость ее как к внешним механическим воздействиям, так и к тургорному давлению изнутри. [c.601]


    Мембраны — полые волокна — изготовляют наружным диаметром от 40 мкм до 2,5 мм и внутренним диаметром от 20 мкм до 1,5 мм. Толщина стенки полого волокна должна обеспечивать его прочность и устойчивость при действии внешнего или внутреннего давления. Несмотря на сравнительно большую неравномерность пор, полые волокна получили распространение в аппаратах для обратного осмоса и ультрафильтрации, так как обеспечивают огромную поверхность фильтрации в единице объема аппарата. [c.564]

    На четвертой стадии в пространстве между двумя мембранами синтезируется материал кортекса эндоспоры - модифицированный пептидогликан. Затем (5 стадия) на внешней стороне наружной мембраны за счет материала и ферментов цитоплазмы материнской клетки начинают синтезироваться белковые споровые покровы. На [c.96]

    В растительных клетках мембраны составляют значительно меньшую часть клетки, чем в животных клетках. В животных клетках мембрана обычно служит наружной границей клетки и составляет единственную защиту от действия факторов внешней среды. Растительная клетка, напротив, снабжена относительно массивной клеточной стенкой, которая определяет форму клетки в силу своей жесткости и составляет значительную долю от общего веса клетки. Однако стенка растительной клетки не может осуществлять регуляцию передвижения жизненно важных веществ внутрь и наружу для этой цели служит выстилающая ее изнутри мембрана — такая же, какая окружает животную клетку. Внутри этой наружной мембраны размещаются другие мембраны различных типов. [c.44]

    Под электронным микроскопом клеточная стенка грамположительных прокариот выглядит как гомогенный электронно-плотный слой,, толщина которого колеблется для разных видов от 20 до 80 нм. У грамотрицательных прокариот обнаружена многослойная клеточная стенка. Внутренний электронно-плотный слой толщиной порядка 2—3 нм состоит из пептидогликана. Снаружи к нему прилегает, как правило,, волнистый слой (8—10 нм), имеющий характерное строение две электронно-плотные полосы, разделенные электронно-прозрачным промежутком. Такой вид характерен для элементарных мембран. Поэтому трехконтурный внешний компонент клеточной стенки грамотрицательных прокариот получил название наружной мембраны. [c.26]

    Помимо слоев клеточной стенки, типичных для большинства грамотрицательных эубактерий, у некоторых представителей этой группы обнаружены дополнительные слои разной электронной плотности, располагающиеся с внешней стороны от наружной клеточной мембраны. Однако до настоящего времени не ясно, относятся ли они к клеточной стенке, являясь результатом ее последующего усложнения, или же представляют собой структурные элементы многослойного чехла. [c.35]

    Клеточная стенка грамотрицательных бактерий имеет многослойную структуру, где внутренний слой - пептидогликан, затем идут неплотно упакованные молекулы белка (глобулярный слой) внешний слой - липополисахарид и белок. О-специфические боковые цепи ЛПС формируют наружный липопротеиновый слой и проникают наружу от внешней мембраны на 1500 А. Структура ЛПС хорошо изучена. [c.369]

    Это тонкостенная стеклянная мембрана, отделяющая раствор с постоянным значением pH (внутренний раствор) от раствора с измеряемым pH (внешний раствор). На внешней и внутренней поверхности стеклянной мембраны происходят процессы ионного обмена, приводящие к возникновению мембранного потенциала. Во внутренний и во внешний- растворы погружены два электрода, в большинстве случаев хлорсеребряных. Пренебрегая незначительными диффузионными потенциалами, в идеальном случае разность потенциалов ф между внутренним и наружным раствором можно выразить так  [c.491]

    Простейшим механизмом, обеспечивающим перемещение в пространстве нашей схематизированной клетки, представляется изменение поверхностного натяжения на границе раздела наружная мембрана — внешняя среда (вода). Причиной увеличения или уменьшения поверхностного натяжения может быть изменение соотношения гидрофобных и гидрофильных групп в липопротеидных комплексах, образующих мембрану. Если расстояние, на которое должны переместиться клетка, превышает ее линейные размеры, аппарат, обеспечивающий движение, должен работать периодически. Поэтому и изменения поверхностного натяжения должны быть периодическими. Периодические, обратимые изменения поверхностного натяжения в разных местах наружной мембраны приведут к беспорядочному, разнонаправленному перетеканию клетки с места на место — образованию псевдоподий и (к) амебоидному движению. Если такие изменения поверхностного натяжения будут происходить лишь в некоторых [c.168]

    В состав клеточной стенки грамотрицательных бактерий входит наружная мембрана (рис. 2.2), связанная посредством липо-протеина с подлежащим слоем пептидогликана. Наружная мембрана имеет вид волнообразной трехслойной структуры, сходной с внутренней мембраной, называемой цитоплазматической мембраной. Основной компонент этих мембран — бимолекулярный (двойной) слой липидов. Наружная мембрана является асимметричной мозаичной структурой, представленной липополиса-харидами, фосфолипидами и белками. С внешней стороны ее расположен липополисахарид (ЛПС), состоящий из трех компонентов липида А, базисной части, или ядра (от лат. ore — кор), и 0-специфической цепи полисахарида, образованной повторяющимися идентичными олигосахаридными последовательностями. Липополисахарид заякорен в наружной мембране липидом А (рис. 2.3), придающим токсичность липополисахариду, отождествляемому поэтому с эндотоксином. От липида А отходит базисная часть липополисахарида. Наиболее постоянной частью ядра липополисахарида является кетодезоксиоктоновая кислота. 0-специфическая цепь, отходящая от ядра липополисахарида, определяет серогруппу, серовар (разновидность бактерий, выявляемая с помощью иммунной сыворотки) определенного штамма бактерий. Таким образом, с понятием липополисахарида связаны представления об 0-антигене, по которому можно дифференцировать бактерии. [c.23]


    Она состоит из фосфолипидов, типичных для элементарных мембран, белков, липопротеина и липополисахарида (рис. 10, А). Специфическим компонентом наружной мембраны является липопо-лисахарид сложного молекулярного строения, занимающий около 30—40% ее поверхности и локализованный во внешнем слое (рис. 10, Б). [c.34]

    Как видно из рис. 16.3, электроны движутся к внешней стороне мембраны, а протоны концентрируются на внутренней поверхности тилакоидов, т. е. направление протонного градиента противоположно направлению его в митохондриях. Таким образом, тилакоиды представляют собой как бы вывернутые наизнанку митохондрии, поэтому АТФ образуется с их наружной стороны и беспрегтятственно поступает в строму для участия в темновых стадиях фотосинтеза. [c.215]

    Митохондрии — это замкнутые клеточные полиморфные структуры с многочисленными перегородками, возникающие в результате постепенной инвагинации цитоплазматической мембраны. Размеры митохондрий варьируют в широких пределах. Форма митохондрий может быть удлиненной, эллипсовидной или круглой. Эти органоиды ответственны за энергетический обмен клетки и в зависимости от энергонапряженности обмена в клетке внутренняя мембрана может иметь меньше (не напряженный обмен) или больше (энергонапряженный обмен) складок или трубочек (крист). Наружная мембрана митохондрий дрожжей очень прочна и однородна. Внутренняя мембрана неоднородна, к ней в большом количестве прикреплены грибовидные структуры, которые, по-видимому, являются местом сосредоточения ферментов, вероятнее всего, участвующих в процессе окислительного фосфорилирования. Внутренняя мембрана митохондрий, особенно кристы, более лабильна, чем внешняя. [c.28]

    Содержимое клеточного ядра (нуклеоплазма) отделено от цитоплазмы ядерной оболочкой. Дцерная оболочка образована двойной мембраной. Сферическая внутренняя ядерная мембрана содержит специфические белки, выступающие в качестве сайтов связывания ядерной ламины, которая поддерживает мембрану и контактирует с хромосомами и ядерными РНК. Эта мембрана окружена внешней ядерной мембраной, очень схожей с мембраной эидоплазматического ретикулума, в которую она переходит (рис. 8-19). Внешнюю (наружную) ядерную мембрану можно рассматривать как особую часть мембраны ЭР. Подобно мембранам шероховатого ЭР (см. разд. 8.6.1), внешняя ядерная мембрана усеяна рибосомами, участвующими в синтезе белка. Белки, образованные на этих рибосомах, переносятся в пространство между внешней и внутренней ядерными мембранами (перинуклеарное пространство), которое в свою очередь связано с просветом ЭР (см. рис. 8-19). [c.24]

    Клетку можно представить как систему взаимосвязанных мембран, так как имеются небезосновательные предположения, что наружная мембрана клетки, эндоплазматический ретикулум, митохондриальная, лизосомная, ядернея мембраны и аппарат Гольджи тесно связаны между собой. Одна из функций наружной клеточной мембраны — регуляция обмена веществ между внутриклеточным пространством и внешней средой. Тем не менее еще мало известно о динамике и функции клеточных мембран или о деталях той регулирующей роли, которую они могут играть. Описано несколько случаев, когда облучение влияло на внешние клеточные мембраны. Например, облучение в дозах в диапазоне несколько десятков грей вызывает уменьшение проводимости нервного импульса в изолированных периферических нервах взрослых животных. Как известно, передача нервного импульса — результат избирательной диффузии ионов натрия и калия через мембрану аксона. Такие изменения электрической активности нервов, вызванные облучением, указывают на увеличение у аксона пассивной проницаемости для ионов. Изменения поведения и функции центральной нервной системы взрослых животных обнаруживаются после облучения в такой низкой дозе, как 0,5 Гр. Неизвестно, являются ли эти эффекты результатом первичных радиационных повреждений нервной ткани или же они обусловлены косвенным эффектом токсинов, освобождающихся из других поврежденных облучением тканей органов и систем. [c.44]

    При выяснении роли белка 5-100 большинство исследователей придает особое значение взаимосвязи 5Н-групп данного белка с ионами Са2+, поскольку белок 5-100, соединяясь с Са2+, изменяет свою конфигурацию. При этом на наружной поверхности молекулы белка возрастает число гидрофобных групп, белок 5-100 становится более раствор1Имым в липидах и легче проникает внутрь мембраны, где содержится повышенное количество ионов К . Здесь происходит связывание белка 8-100 с К , что приводит к конформационным изменениям белка. Эта новая форма белка плохо растворяется в липидах, ибе-> лок направляется обратно на внешнюю поверхность, мембраны, где происходит отщепление К+ и снова ионы Са + присоединяются к белку 8-100. По мнению Хидена, в постсинаптпче-ских мембранах кроме данного белка участвуют актиногюдоб-ные белки, входящие в состав филаментов. К этим белкам также легко присоединяются ионы Са +. Таким образом, происхо- [c.148]

    Наиболее неопределенрюй остается проблема механизма генерации Д лН HAДH-/ oQ-peдyктaзoй. Кажется вероятным, что по крайней мере часть пути здесь проходит протон. В противном случае пришлось бы постулировать, что часть переносчиков электронов этого звена дыхательной цепи находится на внутренней, а часть — на внешней стороне мембраны митохондрий. В действительности, на наружной поверхности таких центров выявить не удается. [c.120]

    Несмотря на эти черты сходства между митохондриями и хлоропластами, последние устроены таким образом, что происходящие в них процессы Пфеноса электронов и протонов более доступны для изучения, чем в митохондриях. Разрушив внутреннюю и наружную мембраны хлоропластов, можно выделить неповрежденные тилакоидные диски. Они сходны с суб митохондриальными частицами компоненты электронтранспортной цепи, использующие NADP"", ADP и фосфат, тоже расположены здесь с внешней стороны мембраны. Однако тилакоиды представляют собой интактные естественные структуры и потому гораздо более активны, чем суб митохондриальные частицы, получаемые из митохондрий искусственным путем. Поэтому некоторые из экспериментов, впфвые доказавших ключевую роль хемиосмотического механизма, были проведены на хлоропластах, а не на митохондриях. [c.476]

    О группе токсичных для бактерий белков (колицинов) уже шла речь в разд. Г, 7. Они, по-видимому, также связываются со специальными рецепторами на внешней мембране бактерий типа Е. соИ. Нейландс и его сотрудники обнаружили, что у Е. соН рецептор колицина М служит также рецептором и для сидерохромного пептида — феррохрома (дополнение 14-В), и для бактериофага Т5. С этим же участком мембраны связывается антибиотик альбомицин. Существует предположение, что на ранних этапах эволюции у бактерий появились молекулы, обладающие способностью к образованию хелатных комплексов с железом, причем размер этих комплексов постепенно увеличился до такой степени, что они утратили способность диффундировать через наружную мембрану в клетку. В результате возникли специфические системы переноса, которые позднее были использованы фагами к. штаммами, продуцирующими колицин . [c.306]

    У грамотрицательных бактерий четко обозначается трехслой-ность клеточной стенки липополисахаридный слой (О-антиген), наружный слой (нередко обозначаемый как "внешняя мембрана"), состоящий из двух фосфолипидных листков, и подлежащий липопротеиновый слой Липополисахарид проявляет свойства эндотоксина, он занимает пограничное положение между внешней средой и подлежащим фосфолипидом (преимущественно — фосфатиди-лэтаноламином) [c.92]

    Учитывая все изложенное, можно ожидать, что при смешении жидкого стекла с раствором, например СаСЬ, из-за различия pH растворов на границе двух жидких фаз быстрее всех будет протекать реакция гидролиза [обратная реакция (а), см. 3.1]. Нейтрализация заряда анионов приводит к их моментальной коагуляции на стыке фаз, и если концентрация силикатов достаточно велика, образуется мембрана с отрицательным зарядом со стороны силиката и положительным со стороны раствора хлорида кальция. При высокой вязкости силикатного раствора мембрана превратится постепенно в гелевую оболочку из скоагу-лировавшего кремнезема с небольшим градиентом концентрации по кальцию со стороны раствора СаСЬ и по натрию со стороны силиката. Так происходит, после просушки от внешней влаги, образование гранул из капель жидкого стекла или различных смесей на его основе, обладающих некоторой водостойкостью наружного, частично кальцинированного слоя, но не обладающих влагонепроницаемостью [58, 59]. Подобной технологией можно воспользоваться для обратной задачи — капсулирования кремнеземом водорастворимых соединений различных металлов и мало-Растворимых окислов. [c.115]


Смотреть страницы где упоминается термин Внешняя наружная мембрана: [c.340]    [c.251]    [c.393]    [c.261]    [c.177]    [c.122]    [c.307]    [c.27]    [c.476]    [c.332]    [c.46]    [c.27]    [c.124]    [c.20]    [c.82]    [c.83]    [c.19]    [c.172]    [c.373]    [c.353]    [c.637]    [c.76]    [c.29]    [c.101]    [c.165]   
Микробиология (2006) -- [ c.39 ]




ПОИСК







© 2025 chem21.info Реклама на сайте