Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плазматическая мембрана бактерий

    ТОННОГО градиента. Интактные клетки реагируют на воздействие света выделением в среду протонов, приводящим к закислению среды. В суспензии пузырьков из фотосинтетических мембран (хроматофоров) свет вызывает перенос протонов, направленный внутрь. Таким образом, мембраны хроматофоров и тилакоидов имеют такую же полярность, как и субмитохондриальные пузырьки. Это будет поняты , если учесть, что все эти мембраны образуются путем впячивания внутрь и разрастания плазматической мембраны или же внутренней мембраны хлоропласта. Хотя точная локализация отдельных компонентов в мембране еще не установлена, можно думать, что переносчики водорода и электронов расположены и в мембране анаэробных фототрофных бактерий таким образом, что происходит разделение зарядов. В хроматофорах электроны транспортируются наружу, а протоны-внутрь. Создающийся протонный потенциал и служит движущей силой фотосинтетического фосфорилирования. [c.392]


    РИС. 5-8. Строение клеточной оболочки бактерий. Схема плазматической мембраны и стенки грамотрицательной бактерии (см. S haitman С., J Ba teriol., 108, 553—563, [c.388]

Рис. 2.38. Прикрепление жгутика к клеточной стенке и плазматической мембране у грам-отрицатель- ной бактерии. Я-нить жгутика Кр-крючок жгу- о тика ЯМ-плазматическая мембрана ЛС-липо- з полисахаридный слой ЯГ-пептидогликановый слой Ст-стержень. Рис. 2.38. <a href="/info/590720">Прикрепление жгутика</a> к <a href="/info/98958">клеточной стенке</a> и плазматической мембране у грам-отрицатель- ной бактерии. Я-нить жгутика Кр-крючок жгу- о тика ЯМ-<a href="/info/101065">плазматическая мембрана</a> ЛС-липо- з полисахаридный слой ЯГ-пептидогликановый слой Ст-стержень.
    Все клетки имеют ограничивающую их плазматическую мембрану, цитоплазму, рибосомы и ядерную зону или ядро. Размеры и форма клеток определяются скоростями физической диффузии молекул питательных веществ и кислорода, а также соотношением между площадью поверхности и объемом клетки. Существуют два больших класса клеток прокариотические и эукариотические. Прокариоты, к которым относятся бактерии и сине-зеленые водоросли,-это простые клетки малых размеров, характеризующиеся тем, что содержащийся в них генетический материал не окружен мембраной. У них есть клеточная стенка и плазматическая мембрана, а некоторые [c.50]

    Всякая клетка состоит из цитоплазмы и ядерного материала, снаружи ее ограничивает плазматическая мембрана. Этот протопласт может быть окружен еще клеточной стенкой, выполняющей в основном механические функции стенка имеется у растительных клеток и у клеток большинства бактерий. [c.23]

    Компартментализация клетки значительно менее выражена, чем у эукариотических клеток (рис. 2.4). ДНК не окружена ядерной мембраной, а органеллы типа митохондрий и хлоропластов отсутствуют. Область ядра, видимая на электронной микрофотографии ультратонко-го среза клетки в виде сетчатой структуры из тонких нитей, непосред ственно граничит с заполненной рибосомами цитоплазмой (рис. 2.5). У многих бактерий впячивания плазматической мембраны образуют определенные структуры во внутреннем пространстве протопласта (внутриклеточные мембраны). С плазматической мембраной связаны процессы дыхания или фотосинтеза, доставляющие клетке энергию, т.е. функции, за которые в эукариотических клетках ответственны мембраны митохондрий и хлоропластов. [c.27]


    Клеточная стенка у бактерий не жесткая, как стальной панцирь, а тонкая и эластичная, как кожаная покрышка футбольного мяча. Подобно тому как мячу придает упругость надутая камера, клеточной стенке придает определенную упругость плотно прилегающий к ней изнутри протопласт. Внутреннее давление (тургор) обусловлено осмотическими факторами. Осмотическим барьером служит плазматическая мембрана она полупроницаема и контролирует проникновение в клетку и выход из нее растворенных веществ, В отличие от плазматической мембраны клеточная стенка проницаема для солей и других низкомолекулярных соединений. [c.50]

    Регенерация АТР из ADP и Pj. Синтез АТР из ADP и неорганического фосфата (Pi) катализируется АТР-синтазой. Этот фермент преобразует доставляемую потоком электронов энергию в энергию фосфо-эфирных связей АТР. Фермент найден во всех мембранах, участвующих в преобразовании энергии, а именно в мембранах митохондрий, хлоропластов и бактерий. Он достаточно велик (мол. масса 350-10 ) и имеет сложное строение (рис. 7.12, Г)-состоит из головки, построенной из нескольких субъединиц, ножки и основания последнее погружено в липидный слой плазматической мембраны. АТР-синтаза катализирует присоединение фосфата к ADP с отщеплением молекулы воды, в результате чего образуется АТР. Каким образом поток протонов или протонный градиент осуществляет эту реакцию фосфорилирования, пока еще неизвестно возможно, что протоны по какому-то каналу или поре в молекуле фермента оттекают обратно внутрь митохондрии или бактерии, а освобождающаяся при этом энергия используется для фосфорилирования. [c.245]

    Бактерии - наиболее простые организмы, обнаруженные в большинстве природных сред обитания. Это - сферические или удлиненные клетки обычно размером в несколько микрометров (рис. 1-13). Как правило, у них имеется жесткая защитная оболочка, называемая клеточной стенкой, под которой находится плазматическая мембрана, ограничивающая единственный цитоплазматический компартмент, содержащий ДНК, РНК, белки и малые молекулы. В электронном микроскопе содержимое таких клеток имеет вид матрикса различной плотности без явно выраженных организованных внутренних структур (см. рис. 1-8, А). [c.22]

    Как уже упоминалось выще, плазматические мембраны всех бактерий содержат белки-переносчики, использующие градиент ионов Н" [c.393]

    Эритроциты можно обработать таким образом, что они будут связываться на поверхности макрофагов, но не подвергнутся фагоцитозу. Если адсорбировавшим их макрофагам предоставить затем возможность осуществить фагоцитоз бактерий, окруженных антителами, то будут поглощаться лишь бактерии, а эритроциты, даже расположенные в непосредственной близости от места активного фагоцитоза, не будут захватываться. Это говорит о том, что фагоцитоз, как и индуцируемый экзоцитоз тучных клеток (см. разд. 6.5.2), представляет собой локальную ответную реакцию участка плазматической мембраны и лежащих под ней цитоплазматических структур. [c.422]

    Бактерии извлекают энергию из самых разнообразных источников. Некоторые бактерии, подобно животным клеткам, синтезируют АТР, окисляя сахара до СО, и Н2О в процессе гликолиза и затем в цикле лимонной кислоты в плазматической мембране таких бактерий имеется дыхательная цепь, сходная с аналогичной цепью внутренней митохондриальной мембраны Бактерии других типов - строгие анаэробы получают энергию только за счет реакций гликолиза (брожения) или же за счет окислительных процессов, но конечным акцептором электронов у них служит не кислород, а какая-либо иная молекула. Такими альтернативными акцепторами могут быть соединения азота (нитрат или нитрит), серы (сульфат или сульфит) или углерода (фумарат или карбонат). Электроны передаются на эти акцепторы с помощью ряда переносчиков, находящихся в плазматической мембране и сходных с компонентами дыхательной цепи митохондрий. [c.458]

    Как уже обсуждалось в гл. 7, митохондрии и хлоропласты отличаются от других окруженных мембраной органелл тем, что имеют свои собственные геномы. Природа )тих геномов и близкое сходство белков митохондрий и хлоропластов с белками некоторых современных бактерий подтверждает гипотезу о том, что эти органеллы произошли от бактерий, которые были захвачены другими клетками и первое время существовали в симбиозе с ними (см. разд. 7.5.16). Согласно гипотетической схеме, приведенной на рис. 8-4, А, внутренняя мембрана митохондрий и хлоропластов соответствует исходной плазматической мембране бактерий, а матрикс этих органелл произошел из бактериальной цитоплазмы. Таким образом, эти две органеллы оказались изолированы от путей транспорта, связывающих полости большинства органелл друг с другом и с внеклеточным пространством. [c.9]

    Полимиксины обладают ярковыраженным бактерицидным действием против большинства грамотрицательных актерий, превосходя в этом отношении многие другие антибиотики. Мишеиью действия полимиксинов является плазматическая мембрана бактерий. Показано, что полимиксины связываются с фосфатными группами кардиолипина, фосфатидилэтаноламина или других кислых липидов, нарушая барьерные функции мембраны. [c.288]


    С экспериментальцыми данными согласуются следующие представления. Плазматическая мембрана бактерий и внутренняя мембрана митохондрий непроницаемы для ионов, в том числе Н" и ОН электрическая проводимость мембран низка. Мембра- [c.244]

    II. При этом на поверхности внутренней мембраны находятся фосфорилирующие субъединицы, ответственные за образование АТР (рис. 13.12). Они состоят из нескольких белков, в совокупности образующих F,-субъединицу последняя выступает в матрикс и представляет собой АТР-синтазу (рис. 13.9). F -субъединицы с помощью стебелька связаны с мембранной белковой субъединицей Р , пронизывающей, вероятно, всю мембрану (рис. 13.9). При прохождении через (Fq—Р,)-комплекс пары протонов из ADP и Р, образуется одна молекула АТР. Интересно, что сходные фосфорилирующие субъединицы находятся на внутренней стороне плазматической мембраны бактерий и на наружной стороне ти-лакоидной мембраны хлоропластов. Важно отме- [c.135]

    Плазматическая мембрана бактерий участвует в процессах окисления, а ее складчатые уч стктл — мезосомы — обеспечивают специализированные процессы обмена веществ и репликации ДНК. В определенных участках плазматические мембраны фотосинтезирующих бактерий образуют складки, содержат хлорофиллы и каротины и называются хроматофорами диаметр их достигает 100 нм. [c.11]

    Мембраны выполняют в клетке большое число функций. Наиболее очевидной из них является разделение внутриклеточного пространства на компартменты. Плазматические мембраны, например, ограничивают содержимое клетки, а митохондриальные — отделяют митохондриальные ферменты и метаболиты от цитоплазматических. Полупроницае-мость мембран и позволяет им регулировать проникновение внутрь клеток и клеточных органелл как ионов, так и незаряженных соединений. Проникновение многих из них внутрь клетки осуществляется против градиента концентрации. Таким образом, в процессе, известном под названием активный транспорт, совершается осмотическая работа. Протекающий в мембранных структурах бактерий и митохондрий процесс окислительного фосфорилирования служит источником энергии для организма. В хлоропластах зеленых листьев имеются мембраны с очень большим числом складок, которые содержат хлорофилл, обладающий способностью поглощать солнечную энергию. Тонкие мембраны клеток глаза содержат фоторецепторные белки, воспринимающие световые сигналы, а мембраны нервных клеток осуществляют передачу электрических импульсов. [c.337]

    Локализация пигментов. Фотосинтетические пигменты у пурпурных бактерий связаны с внутренними мембранами-везикулярными или трубчатыми выростами плазматической мембраны, которые сохраняют с ней связь, но проникают в толщу цитоплазмы. У разных видов бактерий такие мембраны имеют разную форму. Это могут быть трубочки, везикулы (пузырьки) или скопления ламелл (располагающихся концентрически или же в виде стопок) иногда они заполняют всю внутренность клетки (см. рис. 2.23). Фрагменты мембран, освобождаемые при разрушении клеток в виде везикул и отделяемые центрифугированием, называют хроматофорами . В клетках зеленых бактерий пигменты связаны с различными структурами светособирающие пигменты-главным образом с хлоросомами, а пигменты реакционных центров-с плазматической мембраной (см, рис. 2.4 и 12.9). [c.378]

    Некоторые организмы, особенно бактерии, получают энергию nyrew окисления Нг, H2S или Fe +, а не окисления органических субстратов Кроме того, некоторым специализированным бактериям свойственно-анаэробное дыхание, при котором NO 3, SO или СО2 являются окислителями либо восстановленных переносчиков, либо восстановленных неорганических соединений. В этой главе мы рассмотрим эти процессы,, поставляющие энергию, а также химию реакций, в результате которых атомы кислорода из молекулы О2 входят в органические соединения Происходящие в клетках окислительные процессы исследовать довольно трудно главным образом потому, что соответствующие ферменты в клетке расположены на мембранах или внутри мембран. Б бактериях эти ферменты расположены на внутренней стороне плазматической мембраны или на мембранах мезосом. У эукариот эти ферменты находятся во внутренней мембране митохондрий и в меньшей степени в мембранах эндоплазматического ретикулума. Особенно много неудач было связано с изучением окислительного фосфорилирования (стр. 391). Большие трудности вызвало выделение участвующих в процессе компонентов, но еще труднее оказалось снова собрать эти Компоненты в активно функционирующую систему. [c.361]

    Митохондрии фигурируют во всех аэробных клетках животных и растений, за исключением некоторых примитивных бактерий, в которых функции митохондрий выполняет плазматическая мембрана. Число этих органоидов в клетке различно — от 20—24 в сперматозоидах до 500 ООО в клетке гигантской амебы haos haos. Число митохондрий характерно для клеток данного вида, по-видимому, прн митозе происходит деление митохондрий и их правильное расхождение в дочерние клетки. Во многих клетках митохондрии образуют непрерывную сеть — митохондриальный ретикулум. Форма, структура и размеры митохондрий также варьируют. Они всегда обладают системой внутренних мембран, именуемых кристами. На рис. 13.5 схематически изображена структура митохондрии кз печени крысы. Длина ее примерно [c.429]

    Компартментализация прокариотической клетки значительно менее выражена, чем у эукариотических клеток. ДНК не окружена ядерной мембраной, а органеллы типа митохондрий и хлоропластов отсутствуют. Область ядра, видимая на электронной микрофотографии ультратон-кого среза клетки в виде сетчатой структуры из тонких нитей, непосредственно граничит с заполненной рибосомами цитоплазмой. У многих бактерий впячивания плазматической мембраны образуют определенные структуры во внутреннем пространстве протопласта (внутриклеточные мембраны). С плазматической мембраной связаны процессы [c.10]

Рис. 6-55. Транспортная система, зависящая от периплазматическш субстрат-связываюгцих белков в бактериях с двойной мембраной. Растворенные вещества диффундируют через каналообразующие белки (порины), находящиеся во внещней мембране, и связываются с периплазматическими субстрат-связывающими белками. При этом белки испытывают конформационные изменения, приобретая способность связываться с белками-нереносчиками плазматической мембраны, которые затем перехватывают субстрат и активно транспортируют его через бислой. Эта стадия опосредуется гидролизом АТР. Пептидогликаны для простоты пе показаны Их пористая структура позволяет субстрат- Рис. 6-55. <a href="/info/185658">Транспортная система</a>, зависящая от периплазматическш субстрат-связываюгцих белков в бактериях с двойной мембраной. <a href="/info/73744">Растворенные вещества</a> <a href="/info/1799103">диффундируют через</a> <a href="/info/509604">каналообразующие белки</a> (порины), находящиеся во внещней мембране, и связываются с периплазматическими субстрат-<a href="/info/1416121">связывающими белками</a>. При этом белки испытывают <a href="/info/2999">конформационные изменения</a>, приобретая <a href="/info/664586">способность связываться</a> с белками-нереносчиками <a href="/info/101065">плазматической мембраны</a>, которые затем перехватывают субстрат и активно транспортируют его <a href="/info/1402903">через бислой</a>. Эта стадия опосредуется гидролизом АТР. Пептидогликаны для простоты пе показаны Их <a href="/info/117891">пористая структура</a> позволяет субстрат-
    Плазматическая мембрана. На электронных микрофотографиях ультратонких срезов бактерий, фиксированных четырехокисью осмия, плазматическая мембрана представляется многослойной. Она состоит из двух осмофильных и потому темных слоев толщиной 2-3 нм каждый и промежуточного более светлого слоя толщиной 4-5 нм. По своему строению мембраны бактериальных, животных и растите.пьных клеток очень сходны. Это дает основание говорить об универсальной элементарной мембране . Мембраны можно выделить, подвергнув осмотическому шоку протопласты, полученные с помощью лизоцима. Мембрана богата липвдами, в особенности фосфолипидами. Составляя всего 8-15 % сухого вещества клетки, мембраны содержат 70-90 % всех ее липидов. [c.23]

    Ферменты переноса электронов и окислительного фосфорилирова-ния, находящиеся у эукариот в митохондриях, у бактерий локализуются внутри или на поверхности плазматической мембраны. Цитохромы, железосерные белки и другие компоненты электрон-транспортной цепи находятся исключительно в мембранах. Как показало детальное изучение локализации отдельных компонентов, мембрана построена асимметрично например, цитохром с расположен в ее наружном слое, а АТР-синтетаза — на внутренней стороне мембраны [64]. [c.24]

    Самый известный пример этого явления — фагоцитоз бактерий или других небольших твердых объектов, осуществляемый фаготрофньши простейшими или клетками — фагоцитами многоклеточных животных. Таким же способом в эукариотическую клетку могут проникать капельки жидкости, и этот процесс называется пиноцитозом. Фагоцитоз и пиноцитоз объединяют под общ им названием эндоцитоз. При эндоци-тозе большие участки наружной мембраны втягиваются внутрь клетки и образуют стенку вакуоли потеря веш ества плазматической мембраны восполняется путем синтеза соответствующих новых молекул. [c.52]

    Плазматическая мембрана. На электронных микрофотографиях ультратонких срезов бактерий, фиксированных четырехокисью осмия, плазматическая мембрана представляется многослойной. Она состоит из двух осмиофильных и потому темных слоев толщиной 2-3 нм каждый и промежуточного более светлого слоя толщиной 4-5 нм. По своему строению мембраны бактериальных, животных и растительных клеток очень сходны. Это дает основание говорить об универсальной элементарной мембране ( unit membrane ). [c.44]

    Ферменты переноса электронов и окислительного фосфорилирова-ния, находящиеся у эукариот в митохондриях, у бактерий локализуются внутри или на поверхности плазматической мембраны. Цитохромы, же-лезо-серные белки и другие компоненты электрон-транспортной цепи находятся исключительно в мембранах. Как показало детальное изуче- [c.45]

    У фотосинтезирующих бактерий в мешковидных, трубчатых или пластинчатых впячива-ниях плазматической мембраны содержатся фотосинтетические пигменты (в том числе обязательно бактериохлорофилл). Сходные мембранные образования участвуют и в фиксации азота. [c.24]

    В гл. 3 шла речь о том, что различные полипептиды ассоциируют, образуя большие мультиферментные комплексы, которые с высокой эффективностью катализируют сложные реакции благодаря кооперативной работе субъединиц. Аналогичные комплексы белков обнаружены и в мембранах. Наиболее изучен среди них бактериальный фотосинтезирующий реакционный центр. Этот белковый комплекс находится в плазматической мембране пурпурных фотосинтезирующих бактерий Rhodopseudomonas viridis. Он использует поглощенную энергию света для создания электрона с высокой энергией, позволяющей ему пересекать мембрану быстрее чем за наносекунду. Затем электрон переходит к другим переносчикам электронов, находящимся в мембране, которые используют часть энергии, высвобождаемой в процессе электронного транспорта для синтеза АТР в цитозоле. Реакционный центр построен из четырех различных полипептидов L, М, Н и цитохрома. Для изучения трехмерной пространственной структуры этот комплекс был солюбилизирован в растворе детергента, закристаллизован в виде комплекса белков с детергентом и изучен методом рентгеноструктурного анализа. Как оказалось, реакционный центр содержит четыре молекулы хлорофилла и восемь других коферментов, переносящих электроны. В гл. 7 мы будем говорить о том, что для понимания фотосинтеза очень важным оказалось установление точного положения каждого из коферментов в комплексе. Не мепее значимым (в большой степени относящимся к теме данной главы) событием стало выяснение организации четырех белковых субъединиц в трансмембранном комплексе. Субъединицы L и М гомологичны и состоят каждая из пяти а-спиралей, пронизывающих липидный бислой плазматической мембраны (рис. 6-32). Эти две субъединицы образуют гетеродимер, представляющий собой ядро реак- [c.371]

    Важная роль (Ка" + К" )-АТРазы в регуляции клеточного объема подтверждается тем фактом, что при обработке животных клеток уабаином, ингибирующим натриево-калиевую АТРазу, они разбухают и разрываются. Осмотические проблемы могут решаться в клетках и другими способами. У многих бактерий и растительных клеток плазматическая мембрана окружена полужесткой стенкой, предохраняющей клетку от разрыва. У амеб излишек воды, проникающий внутрь в результате осмоса, собирается в сократительных вакуолях, периодически выбрасывающих свое содержимое наружу (схема 6-1). Однако в большинстве животных клеток основная роль в предотвращении разрыва из-за осмотического давления принадлежит (Ка"+К")-АТРазе. [c.387]

    Чтобы понять взаимоотношения между клеточными комиартментами. полезно представить себе, как они могли возникнуть в процессе эволюции. Считается, что предшественниками эукариотических клеток были организмы, напоминающие бактерии. У бактерий, как правило, нет внутренних мембран соответствующие функции у них выполняет плазматическая мембрана. К таким функциям относится, например, транспорт ионов, синтез АТР и синтез липидов. Однако размеры современных эукариотических клеток превышают размер типичной бактериальной клетки (такой, как Е.соИ) в 10-30 раз. Изобилие внутренних мембран в клетках эукариот можно рассматривать как адаптацию к этом) [c.8]


Смотреть страницы где упоминается термин Плазматическая мембрана бактерий : [c.355]    [c.355]    [c.348]    [c.179]    [c.31]    [c.47]    [c.49]    [c.58]    [c.68]    [c.77]    [c.33]    [c.101]    [c.370]    [c.380]    [c.394]    [c.480]    [c.9]   
Молекулярная биология Структура рибосомы и биосинтез белка (1986) -- [ c.274 , c.275 , c.278 , c.279 , c.280 , c.281 ]




ПОИСК







© 2025 chem21.info Реклама на сайте