Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гафний кислородом

    Металлические и металлоподобные соединения. Порошки титана, циркония и гафния поглощают водород, кислород и азот. При этом растворенные неметаллы переходят в атомарное состояние и принимают участие в образовании химической связи. Наряду с сильно делокализованной (металлической) возникает локализованная (ковалентная) связь. Благодаря этому система приобретает повышенную твердость и хрупкость. Способность Т1, Zг и Н1 поглощать газы используется для получения глубокого вакуума, удаления газов из сплав эв и т. д. [c.531]


Рис. 66. Диаграмма состояния системы гафний — кислород Рис. 66. <a href="/info/315031">Диаграмма состояния системы</a> гафний — кислород
    Титан, цирконий и гафний являются типичными металлами, напоминающими по внешнему виду сталь. Они тугоплавки, хорошо поддаются механической обработке. Однако присутствие в этих металлах примесей кислорода, азота, углерода или водорода весьма отрицательно сказывается на их пластичности, ковкости, прочности на разрыв и других механических характеристиках. Основные константы, характеризующие свойства рассматриваемых металлов  [c.283]

    Несколько отличные результаты получены при изучении кинетики реакций дехлорирования тетрахлоридов циркония и гафния кислородом. Согласно [161], при температурах ниже 600° С скорость реакции НГС 4 с кислородом больше, чем скорость реакции 2тС , а при температурах выше 600° С наблюдается обратное явление, вследствие чего разделение циркония и гафния затрудняется. [c.45]

    СИСТЕМА ГАФНИЙ - КИСЛОРОД [c.338]

    Окислы. Атом кислорода невелик, его радиус меньше радиусов атомов углерода и азота однако настоящие фазы внедрения кислорода — только твердые растворы и низшие окислы переходных металлов. В силицидах и боридах фактором, препятствующим образованию фаз внедрения, является большой атомный радиус, в окислах такой фактор — электронная структура атома кислорода. Электронная оболочка атома кислорода ls 2s 2p имеет два неспаренных электрона. Кислород подчиняется правилу октета, и завершенная электронная структура может быть получена путем приобретения двух электронов. Поэтому у кислорода донорная способность ослаблена склонностью к поглощению электронов. Цирконий и гафний легче отдают электроны, поэтому только титан образует с кислородом фазу переменного состава на основе окисла TiO с преимущественно металлической связью (радиус кислорода в ней 0,7 A) и координационным числом титана 6. [c.236]

    Металлические титан, цирконий и гафний в компактном состоянии химически устойчивы на воздухе до 600 °С и выше. В атмосфере чистого кислорода уже при 4UU—500 °С металлы сгорают до ЭОа. [c.365]


    Поскольку американское издание вышло в 1962 г., то становится понятным, почему ее авторы не отметили образование криптоном и ксеноном химических соединений, а также не смогли указать на искусственное приготовление (в г. Дубне под Москвой) изотопов элемента 104 — курчатовия, являющегося аналогом гафния. При изложении материала авторы не всегда последовательны. Так, введя представление о степени окисления какого-либо атома в молекуле, они не использовали его широко, например, для характеристики состояния атомов кислорода в перекисях и особенно в надперекисях. Вызывает недоумение отсутствие четкости в описании открытия периодического закона и приписывание чести открытия этого закона наряду с Д. И. Менделеевым и Л. Мейеру. [c.7]

    Оксиды d-металлов IV группы образуются с большим выделением энергии и могут иметь различные степени окисления и формы химической связи. Для циркония и гафния более характерны соединения высшей степени окисления. Поглощение кислорода титаном идет, по существу, почти непрерывно, так как его оксиды обладают значительной широтой области гомогенности и, кроме того, кислород может находиться в твердом растворе а-титана или образует субоксиды. Известны следующие соединения титана с кислородом  [c.329]

    При высоких температурах защитное действие оксидной пленки ослабевает, и металлы проявляют заметную химическую активность. В кислороде титан, цирконий и гафний сгорают, образуя диоксиды ЭОг. Они энергично соединяются также с галогенами (ЭНа , серой (ЭЗа), азотом и углеродом. В порошкообразном состоянии Ti, 2г и Н способны поглощать большие количества водорода. [c.284]

    Взаимодействие металлов с азотом протекает более медленно и при более высокой температуре. Так, цирконий реагирует с ним выше 900°. Коррозия циркония при этих температурах протекает быстрее в воздушной атмосфере, чем в атмосфере чистого кислорода или азота. Можно предполагать, что образующаяся в этом случае окисно-нитридная пленка имеет дефектную структуру с кислородными вакансиями, вследствие чего облегчается диффузия кислорода. При нагревании на воздухе гафний ведет себя так же, как и цирконий, однако скорость проникновения кислорода в гафний ниже, чем в цирконий. При 1200° компактный титан загорается на воздухе и в атмосфере азота. Это характерно только для немногих элементов. Стружка и порошки титана, циркония и гафния более активны, чем компактные металлы, обладают пирофорными свойствами, легко загораются. При горении порошков циркония развивается исключительно высокая температура. Циркониевая пыль с размерами частиц менее 10 мкм способна на воздухе взрываться. [c.212]

    На воздухе при обычной температуре титан, цирконий и гафний весьма устойчивы. Взаимодействие с кислородом с образованием диоксидов начинается только при высокой температуре титан бурно реагирует с кислородом воздуха при 1200—1300° С, а цирконий при 600—700 С  [c.79]

    Аргон бо.пее доступен, чем гелий и неон. Этот газ широко используют в металлургии. Обычно им пользуются при горячей обработке титана, ниобия, гафния, урана, тория, щелочных металлов, где исключается контакт с кислородом, азотом, водой и оксидом углерода (IV). Широкое внедрение нашел метод дуговой электросварки в среде аргона. [c.228]

    Кислород воздуха окисляет титан, цирконий и гафний до оксидов (IV) ЭОа лишь при высоких температурах. Наиример  [c.409]

    Характеристические соединения. При нагревании в атмосфере кислорода титан, цирконий и гафний сгорают с образованием диоксидов ЭО2. Стандартные энтальпии образования высших оксидов из простых веществ возрастают в ряду Т1 — 7г — НГ, что свидетельствует о стабилизации высшей степени окисления при переходе от Т1 к НГ  [c.392]

    Органические соединения. 2г и НГ образуют соединения со многими органическими веществами. В них связь атомов 2г и НГ с органической частью молекулы осуществляется через атомы Н, Р, 5, но чаще всего — через атомы кислорода. Соединения со связью Ме — С мало характерны для циркония и гафния. [c.302]

    При электронно-лучевой плавке из гафния удаляется также кислород вследствие образования летучей НЮ. При 2000°К давление пара гафния равно 10 атм, а давление пара НЮ атм. [c.356]

    Г фиий, а также искусственно полученный элемент курчатовин (№ 104). Конфигурация электронной оболочки атомов этих элементов такая же, как у титана, — d s . Аналоги титана цирконий и гафний являются тяжелыми металлами — их плотности соответственно 6,45 и 13,31 г/см температуры их плавления также выше, чем у титана 1852 и 2225°С. Цирконий и гафний образуют разнообразные соединения, в устойчивых и наиболее характерных из которых цирконий и гафний четырехвалентны. Устойчивость соединений, в которых эти элементы трех- и двухвалентны, невелика п убывает в направлении Ti—Zr — Hf. В этом же направлении возрастает металлическая активность этих элементов. Цирконий и гафний, подобно титану, существуют в двух полиморфных видо-измеР ениях — а и р. Также подобно титану цирконий и гафпин при обычных температурах химически неактивны и коррозионноустойчивы, а при высокой температуре реагируют с кислородом, азотом н другими элементарными окислителями. [c.275]


    А. Е. Евстюхин и соавторы [691 исследовали кинетику окисления гафния кислородом методом непрерывного взвешивания на вакуумных крутильных микровесах в области температур 600—1000° С при давлении 150 мм рт. ст. Они использовали образцы иодидного гафния с содержанием циркония менее 1%, кислорода 0,014%, азота 0,008% и железа 0,01%. На рис. И приведены кривые изменения массы образца гафния со временем при различных температурах. [c.113]

    Результаты микроструктурного исследования сплавов гафния с кислородом, измерения их микротвердости, электросопротивления и термо-э. д. с. показали, что в системе гафний — кислород образуются субоксиды состава Hf O и HfgO [1 ]. Предполагается, что субоксид HfjO устойчив до температуры 1650° С и выше. [c.129]

    Геллер и Коренцвит [26 получали моноклинную двуокись гафния окислением небольшого количества металлического высокочистого гафния кислородом при температуре 1100° С. [c.130]

    Исследовано фазовое равновесие системы гафний — кислород в интервале концентраций до 27 ат.% кислорода. Образцы готовили из иодидного гафния и Hf02 плавкой в дуговой печи в атмосфере аргона. Их подвергали гомогенизирующему отжигу при 800° С в вакууме и дополнительно отжигали при 1000 и 1650° С с последующей закалкой в воду. Результаты микроскопического анализа образцов, измерения их твердости, электросопротивления и термо- [c.338]

    В чистом виде гафний, подобно другим элементам подгруппы титана,— металл, по внешнему виду похожий на сталь. При низкой температуре устойчив. При высокой температуре, наоборот, химически очень активен. Это является общей чертой металлов Ti, 2г и Ш при нагревании они энергично соединяются с галоидами, кислородом, серой, углеродом и азотом. Карбид Н1С очень тугоплавок (/ л 3890°). Карбиды металлов подгруппы титана общей формулы ЭС (Т1С, 2гС и НГС) — очень твердые кристаллы металлического вида, применяются при изготовлении твердых сплавов. Сплав, состоящий нз 80%ДЮ и 20% НГС, отличается высокой тугоплавкостью 4215°). Высокая температура плавления характерна и для двуокиси гафния Н10а (2770°). [c.464]

    Карбиды титана, циркония и гафния проводят электрический ток, легко сплавляются с металлами и другими карбидами, образуя при этом иногда чрезвычайно твердые тугоплавкие сплавы. При обычной температуре они довольно инертны при высоких же температурах ведут себя подобно соответствующим элементарным металлам (реагируют с галогенами, кислородом, серой, азотом, а также кислотами и солевыми окислителями с образованием продуктов, аналогичных получающимся при действии на соответствующие металлы). Подобного типа соединения титан, цирконий и гафний образуют с фосфором (фосфиды), кремнием (силиды), бором (бориды). [c.85]

    Соединения лантаноидов с кислородом. Соединения лантаноидов с кислородом в свободном виде встречаются совместно с ураном, цирконием, гафнием и торием в виде сложных минералов, где содержание лантаноидов колеблется от 0,8 до 31%. Большинство полуторных оксидов (МваОз) представляют собой бесцветные или окрашенные соединения от светло-желтого до лилового цвета. Плотности оксидов увеличиваются с ростом порядкового номера элемента. Их теплоты образования очень велики и могут быть сравнены с теплотами таких прочных оксидов, как А12О3 и MgO. Для полуторных оксидов лантаноидов характерно существование нескольких аллотропических модификаций. [c.281]

    Титан, цирконий и гафний химически активны только при высоких температурах. Они соединяются с галогенами, кислородом, серой и другими металлоидами, в частности, энергично поглощают водород с образованием гидридов состава МН2. Все три металла растворимы в царской водке лучшим их растворителем является смесь (HF + HNO3)  [c.515]

    По типу внедрения образуют твердые растворы с титаном, цирконием и гафнием также кислород и бор. Так, кислород в a-Ti растворяется вплоть до 34 ат. долей, % при 925 °С, до 40 ат. долей, % в a-Zr и до 20 ат. долей, % в a-Hf, по типичных фаз внедрения обычно ие образует в силу высокой электроотрицательности. Однако существующие низшие оксиды титана Ti O и TiaO с металлидными свойствами можно формально рассматривать как фазы внедрения с частично заполненными октаэдрическими пустотами. Бориды состава ЭаВ и ЭВ являются металлоподобиыми фазами внедрения, твердыми и тугоплавкими, хотя и уступают в этом отношении карбидам и нитридам. Известны, кроме того, фазы состава ЭВг для всех элементов подгруппы титана. Однако их принадлежность к фазам внедрения сомнительна, поскольку атомный радиус бора не позволяет его атомам размещаться в небольших тетраэдрических пустотах. [c.244]

    Использование титана, циркония, гафния и их соединений. По коррозионной стойкости даже в морской воде титан превосходит все нержавеющие стали и цветные металлы. Поэтому он и его сплавы находят различное применение в машиностроении, авиа- и судостроении, турбостроении, в производстве вооружения. Добавка 0,1% Т1 резко повышает качество стали. Сталь с добавкой 2г используется в изготовлении броневых плит и щитов, стволов орудий и пр. Эти металлы связы-вакзт азот и кислород, растворенные в стали, что предотвращает образование раковин и сообщает ей однородность. [c.332]

    Минералы. Руды. Месторождения. Обогащение руд Л итан — один из наиболее распространенных элементов. (По данным Д. П. Виногра-дова в земной коре (без океана и атмосферы) содержится 0,6% титана по распространенности он занимает десятое место.1/Среди металлов, имеющих значение в качестве конструкционных материалов, он уступает по распространенности только алюминию, железу, магнию. Титан, как и его аналоги цирконий и гафний,— литофильный элемент, т. е. обладает большим сродством к кислороду. Содержится в осадочных породах известняке, песчанике, глинистых породах и сланцах. Еще больше его в магматических породах гранитах и особенно в базальтах. Встречается в природе в виде двуокиси, титанатов, ти-тано-ниобатов и сложных силикатов. Известно более 60 минералов, в состав которых входит титан. В его минералах часто содержатся редкоземельные элементы, цирконий и торий. [c.243]

    В водной среде только эфиры и органические производные фосфорной кислоты образуют устойчивые комплексы. Возможность их образования обусловлена донорно-акцепторным взаимодействием фос-форильного кислорода с атомами металлов. В качестве примера можно назвать комплексы циркония и гафния с трибутилфосфатом (ТБФ), сравнительно хорошо растворимые в органических веществах разных классов и малорастворимые в воде. Состав комплексов, переходящих в органическую фазу, зависит от условий экстракции. Из кислых растворов (до 8 М)экстрагируются комплексы Ме(НОз)4-2ТБФ, Me l4- [c.304]

    Все Э. X. образовались в результате многообразных сложных процессов ядерного синтеза в звездах и космич. пространстве. Эти процессы описываются разл. теориями происхождения Э. X., к-рые объясняют особенности распространенности Э. X. в космосе. Наиб, распространены в космосе водород и гелий, а в целом распространенность элементов уменьшается по мере роста 2. Такая жЬ тенденция сохраняется и для распространенности Э. х. на Земле, однако на Земле наиб, распространен кислород (47% от массы земной коры), далее следуют кремний (27,6%), алюминий (8,8%), железо (4,65%). Эти элементы вместе с кальцием, натрием, калием и магнием составляют более 99% массы земной коры, так что на долю остальных Э. х. приходится менее 1% (см. Кларки химических элементов). Практич. доступность Э. х.. определяется не только величинои их распространенности, но и способностью концентрироваться в ходе геохим. процессов. Нек-рые Э.х. не образзтот собств. минералов, а присугствуют в виде примесей в минералах других. Они наз. рассеянными (рубидий, галлий, гафний и др.). Э. х., содержание к-рых в земной коре менее 10 -10 %, объединяются понятием редких (см. Редкие элементы). [c.472]


Смотреть страницы где упоминается термин Гафний кислородом: [c.80]    [c.125]    [c.366]    [c.99]    [c.236]    [c.4]    [c.301]    [c.351]    [c.409]    [c.322]    [c.473]    [c.363]   
Тугоплавкие материалы в машиностроении Справочник (1967) -- [ c.36 ]




ПОИСК





Смотрите так же термины и статьи:

Гафний



© 2025 chem21.info Реклама на сайте