Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полупроводники как катализаторы связь, акцепторная

    Большинство неметаллических катализаторов обладает полупроводниковыми свойствами, поэтому заманчиво использовать это их свойство в качестве ключа к раскрытию природы активности. Такая возможность связана со способностью полупроводника обмениваться зарядом с адсорбированной частицей, принимая или отдавая электрон. Согласно существующей теории, центром хемосорбции (активным центром) является свободный электрон (или дырка ) полупроводника. Адсорбированные атомы или молекулы рассматриваются как примеси, нарушающие строго периодическую структуру решетки. В энергетическом спектре кристалла они могут быть изображены локальными уровнями, расположенными в запрещенной зоне полупроводника (см. гл. V). Разные частицы занимают различные уровни в запрещенной зоне. Если реагирующая частица занимает уровень, расположенный ближе к зоне проводимости, т. е. уровень адсорбированной частицы находится выше уровня Ферми на поверхности, то все хемосорбционные частицы являются донорами электронов. Если же уровень адсорбированной частицы ниже уровня Ферми, она является акцептором электронов. Таким образом, адсорбционная способность и каталитическая активность поверхности полупроводника определяются взаимным расположением локального уровня адсорбированрой частицы и по,ложением уровня Ферми на поверхности. Реакция называется акцепторной, если скорость 472 [c.472]


    Электронная теория катализа допускает существование разных видов связи хемосорбированных частиц из газа на поверхности полупроводника слабой одноэлектронной связи и двух видов прочной двухэлектронной связи — акцепторной и донорной, которые в свою очередь могут иметь ковалентный или ионный характер в зависимости от природы адсорбируемой частицы. Предположим, что адсорбируемая частица является одновалентным атомом электроположительным атомом А (типа Na) или электроотрицательным атомом В (типа С1), а катализатор — полупроводниковый ионный кристалл состава MR (типа Na l), который имеет в узлах решетки и на поверхности кристалла частицы М+, R , М и R. При этом будут наблюдаться следующие шесть случаев химической связи, показанные на схеме (в двух случаях — 2 и 5 — связь не образуется). [c.455]

    Изложенные противоречия в экспериментальных данных сами по себе не говорят о неправильности исходного предположения о связи каталитической активности с положением уровня Ферми в полупроводнике. Каждое из этих противоречий может быть объяснено. Например, неодинаковое влияние примесей в полупроводнике на протекание окисления СО или дегидрирования спиртов, наблюдавшееся некоторыми авторами, можно было бы объяснить различными лимитируюш ими стадиями в разных условиях реакции, как это многие и делают [16, 40]. Следует также учесть, что в процессе реакции может происходить изменение химического состава катализатора, например его окисление или восстановление, сопровождающееся изменением его электронной структуры. Такое изменение, в частном случае, может привести и к иному типу связи каталитической активности с количеством и характером примеси. Кроме того, обычно сравнивают каталитическую активность полупроводника с количеством введенной донорной или акцепторной примеси, а не непосредственно с положением уровня Ферми, которое нельзя определить из данных, приводившихся в статьях. [c.12]

    Следует учитывать далее, что, по последним данным, при большом числе поверхностных уровней в электронном отношении связь поверхностных свойств с объемными ослаблена (Ое по данным [23]). В таких случаях сравнивать химические поверхностные свойства следует с поверхностными, а не с объемными а и Аст. Эти обстоятельства до сих пор не учитывались. Некоторые химики пытались обнаружить резкие различия в каталитических свойствах дырочных и электронных полупроводников, утверждая, что одни реакции преимущественно катализируются л-полу-проводниками, другие — р-полупроводниками и что этому соответствую"г разные механизмы или, по-меньшей мере, разные контролирующие стадии реакции [24]. Чаще всего распад КгО и окисление СО считались акцепторными реакциями, а гидрирование олефинов и дейтерообмен НгН-Ог донорными реакциями, и для первых, в качестве катализаторов, преимущество отдавалось р-полупроводникам, а для вторых — -полупроводникам. К сожалению, большая часть приводимых сопоставлений мало убедительна, частью из-за различия поверхностного и объемного типа проводимости, частью из-за преобладания собственной проводимости в области температуры, к которой относятся исходные данные. [c.13]


    Целью проведенного нами исследования было изучение связи между работой выхода и заполнением при адсорбции донорных и акцепторных молекул на типичных окисных катализаторах-полупроводниках (N 0, СиО, ZnO). [c.88]

    В действительности, как правило, при прочной (двухэлектронной) связи не образуются ни чисто гомеополярные, ни чисто ионные связи. Одноэлектронно (слабо) связанные атомы или радикалы обладают свободной валентностью и реакционноспособны , что и является причиной каталитического ускорения реакций. Двухэлектронные связи приводят к образованию прочных поверхностных соединений, не обладающих реакционной способностью и могущих являться причиной хемосорб-ционного отравления поверхности. В зависимости от типа полупроводника (и или р) адсорбция будет сопровождаться связью донорного или акцепторного типа, что и определяет селективность действия катализаторов полупроводникового типа. [c.302]

    Основным фактором, определяющим каталитическую активность металлов, является конфигурация -оболочек и поэтому каталитические свойства проявляются наиболее широко у элементов вставных декад ( переходных /металлов). Хемосорбция на поверхности металла (или полупроводников — окислов некоторых металлов) может осуществляться либо путем связывания электронов катализатора (акцепторная связь), либо путем передачи электронов катализатору (донорная Связь). Для понимания роли катализаторов в процессах гидрирования необходимо также учитывать, что прямое одностадийное (согла-совамное) присоединение водорода к олефинам запрещено правилами орбитальной симметрии. Взаимодействие занятой орбитали водорода со свободной разрыхляющей я-орбиталью олефина, необходимое для возникновения овых связей С—Н, невозможно По соображениям симметрии, а перекрывание разрыхляющих орбиталей молекулы водорода и олефина, дозволенное правилами орбитальной симметрии, не может привести к присоединению водорода из-за отсутствия на этих орбиталях электронов. Однако необходимые для образования химической связи электроны могут быть доставлены с -орбиталей переходных. металлов, поскольку эти орбитали могут перекрываться как с разрыхляющими о-орбиталяади молекулы водорода, так и с разрыхляющими п-орбиталями олефинов (в л-комплек-сах). Это можно проиллюстрировать на примере гидрирования этилена  [c.140]

    Видимо, правильными являются представления о влиянии типа проводимости на направление каталитической реакции. Дырочная проводимость должна способствовать донорному типу первичного акта хемосорбции субстрата с переходом электронов последнего в энергетическую зону катализатора. На полупроводниках с электронной проводимостью должен превалировать акцепторный тип хемосорбции с затягиванием электронов катализатора адсорбатом. Соответственно, субстрат образует с атомами катализатора дативные или акцепторные связи, аналогичные координационным. Потенциальными центрами образования таких связей могут быть биографические дефекты катализатора, вблизи которых стабилизи- [c.32]

    Исследования, направленные на определение характера и энергии связи молекул реагента с катализатором, были начаты главным образом в 50-х годах. Наибольшее развитие они получили применительно к жидкофазным гетерогенным реакциям гидрирования благодаря применению электрохимических методов [12] и к реакциям дегидратации спиртов на окиси алюминия и алюмосиликатах [149]. К настоящему времени эти исследования широко развиты в Институте органической химии АН СССР (главным образом работы А. А. Толстопятовой), в МГУ (А. В. Киселев [154, К. В. Топчиева [155] и др.), в Университете Дружбы народов им. Патриса Лумумбы (В. М. Гряз-нов [156]), в лаборатории С. 3. Рогинского [157], в Институте физической химии им. Л. В. Писаржевского [158—161] и др. К этим исследованиям, по существу, относятся и кинетические работы М. И. Темкина, Г. М. Панченкова, В. А. Ройтера, С. Л. Кипермана и др. [13, 162—167], которые также раскрывают характер и энергию связей в промежуточных поверхностных соединениях. В результате было установлено, что в каталитических реакциях кислотно-основного характера связь молекул реагентов с катализатором осуществляется преимущественно в результате взаимодействия протоно-донорных (главным образом гидроксильных) групп с протоно-акцепторными группами или атомами, а именно с я-системами непредельных соединений, с кислородными атомами спиртов и т. п. Есть основания полагать, что я- )лектроны принимают участие в адсорбции на металлах и полупроводниках. По многим данным [5, 154, 156], связь реагентов с катализаторами может быть как слабой, так и сильной в последнем случае происходит полный гомолиз или гетеролиз связей и радикализация исходных молекул. Получено много данных, свидетельствующих об участии в хемосорбционных связях как электронов катали-затора-нолупроводника, так и электронов молекул [168—172]. [c.104]


Смотреть страницы где упоминается термин Полупроводники как катализаторы связь, акцепторная: [c.456]    [c.55]    [c.7]    [c.10]    [c.74]   
Гетерогенный катализ (1969) -- [ c.241 , c.243 ]




ПОИСК





Смотрите так же термины и статьи:

Акцепторная РНК

Полупроводники

Полупроводники полупроводники

Связь акцепторная



© 2025 chem21.info Реклама на сайте