Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ферри

    На свойства сталей большое влияние оказывает также их термическая обработка, вызывающая вторичные изменения в соотношении соединений и структуре сплавов. Так, при медленном охлаждении отпуске) стали аустенит постепенно разлагается на цементит и феррит, и сталь становится мягкой. При быстрой же охлаждении закалке) стали аустенит превращается в мартенсит [c.583]


    Снижение ударной вязкости объясняется выделением из твердого раствора на ферритной основе - карбидов и нитридов. Чистый феррит имеет очень низкую способность сопротивляться ударным нагрузкам. [c.86]

    Промотирование железоокисных катализаторов щелочными металлами (8-9%) оказывает существенное влияние на энергию связи кислорода в кристаллической решетке катализатора и соответственно на скорость выгорания углеродистых отложений, но не оказывает влияния на механизм окисления углеродистых отложений [3.27]. При температуре ниже 550 С каталитическое выгорание углерода происходит вследствие воздействия двух соединений — карбоната калия и оксида железа. При температуре выше 550"С калий связывается оксидом железа (П1) в феррит. Введением промоти-рующих добавок можно повысить, но нельзя понизить энергию связи кислорода. Поэтому промотирующее влияние добавок щелочных металлов на процесс окисления углерода будет проявляться в основном лишь в области высоких температур, когда лимитирующим этапом регенерации является присоединение кислорода к катализатору и увеличение энергии связи кислорода приводит к ускорению окисления угле- [c.70]

    Определение стандартного потенциала ферри- [c.308]

    И растворы ферро-феррицианидов, насыщенные растворы хингидрона в растворах серной кислоты различных концентраций. [c.418]

    Отвлекаясь от обсуждения гидродинамических особенностей самого процесса и постановки задачи, заметим, что с точки зрения кинетики процесса основной результат состоял в том, что расчетное положение видимой границы фронта пламени существенно зависит как от правильного выбора уровня адекватности кинетической модели в зоне активного процесса, так и от кинетической предыстории смешивающихся потоков. Для выяснения влияния адекватности модели па точность описания отрыва были проведены контрольные расчеты для моделей Ферри [95] адекватности = 0,57 и 13-стадийной модели Г (/ = = 1—9, 11—13, 24) Q = 0,72 при вариации значений к . Из результатов расчета следует, что концентрации НОа и Н Ог достигают столь значительных величин, что ими пренебречь нельзя без существенного ухудшения точности аппроксимации эксперимента. (Экспериментально длина отрыва диффузионного пламени фиксировалась по положению видимой границы фронта пламени на негативах, а воспламенение — по резкому подъему температуры). [c.354]


    Металлические и металлоподобные соединения. Подобно другим d-элелентам,. железо с малоактивными неметаллами образует соединения типа металлических. Так, с углеродом оно дает карбид состава Fej (потентат), твердые растворы аустенит — раствор С и -Ре феррит. — раствор С в а-Ре), эвтектические смеси (железа с углеродом, цементита с аустенитом, железа с цементитом и др.). Изучение условий образования и свойств соединений железа с углеродом имеет большое значение для понимания структуры, состава и свойств железоуглеродистых сплавов. В зависимости от условий кристаллизации и состава расплава Ре—С структура и соотношения компонентов существенно меняются, а следовательно, изменяются и физико-химические свойства получаемых сплавов. [c.583]

    При содержании хрома 12-14% полное превращение а -> у в процессе нагрева становится невозможным. При охлаждении таких сплавов структура становисся двухфазной и имеет название мартенситно-ферри псой. [c.220]

    С точки зрения коррозионной стойкости, оптимальное содержание Сг в стали составляет 12-14%. Такой уровень легирования Сг обеспечивае г легкую пассивацию поверхносги во многих агрессивных средах, связанных с производством нефтехимических продуктов. При повышении содержания хрома более 12% коррозионная стойкость практически не увеличивается. Вместе с тем в этом случае имеет место проявление склонности стали к охрупчиванию и снижению прочности в связи с формированием в структуре значительного количества ферритной составляющей. 13-14 %-ные хромистые стали с частичным у-а (М)- превращением относят х мартенситно - феррит-ным. Эти стали известны еще под названием полуферритных. По структуре мартенситно-ферритные стали соответствуют сплавам Ре - Сг. Количество 6- феррита в сталях повышается с увеличением содержания Сг и снижением концентрации углерода. С введением углерода границы существования области у - твердых растворов сдвигаются в сторону более высокого содержания Сг. У 13% - ных хромистых сгалей С < 0,25% термокинетическая диаграмма распада аустенита состоит из двух областей превращения. При температурах выше 600 °С в случае достаточно низкой скорости охлаждения возможно образование ферритной составляющей структуры. Ниже 400 °С при более быстром охлаждении наблюдается бездиффузионное превращение аустенита в мартенсит. Количество образовавшегося мартенсита в ка-асдом из указанных температурных ингервалов зависит, главным образом, от скорости охлаждения и содержания углерода в стали. [c.234]

    Процессы Ферр о КС и Манчестер . В качестве пог.тотителя используют водный рас твор карбоната натрия г. суспензией окиси железа. Раствор обычно содержит 3% карбоната натрия и 0,5% гидрата окиси железа. [c.193]

    Чистое железо кристаллизуется в виде трех модификаций а, ( и 8, каждая из которых устойчива в своем интервале температур. Твердые растворы углерода в этих модификациях называются соответственно а-феррит, аустенит и оч )еррит. Модификации а и S обладают одинаковой кубической пространственно центрированной решеткой и представляют собой, строго говоря, одну фазу модификация 7 является кубической гранецентрированной решеткой. Последний тип решетки допускает значительно большую растворимость углерода. [c.415]

    Из твердых растворов, содержащих менее 0,9% углерода, в первую очередь выделяется феррит, а из растворов, содержащих более 0,9% углерода, в первую очередь выделяется це.ментнт, который называют вторичным цементитом. В обоих случаях состав остающегося твердого раствора приближается [c.415]

    Регулируя состав исходного расплава, скорость охлажения и продолжительность выдержки при выбранных по диаграмме температурах, можно получать сплавы самых различных структур . Если затем полученную систему закалить, т. е. очень быстро охладить, то все дальнейшие превращения сильно тормозятся и созданная структура сохраняется, хотя и является термодинамически неустойчивой. Это и есть путь получения различных сортов сталей. Следует добавить, что в процессе закалки могут образоваться еще различные, не упомянутые здесь неустойчивые кристаллы. Например, при очень быстром охлаждении аустенита получается мартенсит, который представляет собой феррит, пересыщенный углеродом. Возможность образования подобных систем еще больше усложняет разнообразие в структурах, а следовательно, и в свойствах сталей. [c.417]

    Механические свойства феррита и аустенита зависят от содержания в них углерода. Однако при всех концентрациях углерода феррит и аустенит менее тверды и более лластичны, чем цементит. [c.674]

    Механические свойства медленно охлажденной углеродистой стали сильно зависят от содеря.ания в ней углерода. Медленно охлажденная сталь состоит из феррита и цемсстита, причем количество цементита пропорционально содержанию углерода. Тпердость цементита намного выше твердости феррита. Поэтому при увеличении содержания углерода в стали ее твердость повышается. Кроме того, частицы цементита затрудняют движение дислокаций в основной фазе — в феррите. По этой причине увеличение количества углерода снижает пластичность стали. [c.685]


    Уменьшение концентрации окисленной формы при постоянной К(зицентрации восстановленной снижает потенциал исследуемой системы, и наоборот, всякое уменьшение концентрации восстановленной формы нри постоянной концентрации окисленной увеличивает окислительно-восстановительный иотенциал. Так, например, введение в раствор, содержащий ферри-и ферроионы, ацетата натрия уменьшает окислительно-восстановительный потенциал, так как иоиы трехва-леитного железа связываются в комплекс. Введение в эту же систему оксалата аммония, образующего комплекс с железом (И), увеличивает потенциал изучаемой системы. [c.306]

    Важным примером делокализации и поглощения энергии является хлорофилл, который обсуждался в послесловии к гл. 20. Ароматическое кольцо, окружающее ион Mg , представляет собой протяженную делокализо-ванную систему, образуемую порфирином (см. рис. 20-19). Электронные энергетические уровни этой системы обусловливают поглощение света с одним максимумом в фиолетовой области, при 430 нм, и вторым максимумом в красной области, при 690 нм (см. рис. 20-22). При поглощении света молекулой хлорофилла ее электрон возбуждается на более высокий уровень это позволяет хлорофиллу восстанавливать ионы Ге " в ферре-доксине, белке с молекулярной массой 13000, который содержит два атома железа, координированные к сере. Последующее окисление ферредоксина служит источником энергии для протекания других реакций, которые в конце концов приводят к расщеплению воды, восстановлению диоксида углерода и, наконец, к синтезу глюкозы, С НиОв. [c.307]

    Измеренные при комнатной температуре величины и 5 для большого числа комплексов железа [1] представлены в табл. 15.3. Для комплексов железа изомерные сдвиги в положительном направлении соответствуют снижению электронной плотности вблизи ядра. Для высокоспиновых комплексов существует корреляция между изомерным сдвигом и х-электронной плотностью. Увеличение 5 на 0,2 мм/с эквивалентно снижению х-электронной плотности заряда на ядре на 8% [8]. Отрицательные величины, полученные для низкоспиновых феррицианидных комплексов по сравнению с высокоспиновыми комплексами железа(ПЛ, свидетельствуют о большей электронной плотности на ядре феррициа-нид-иона. Этот результат объясняли интенсивным я-связыванием в ферри-цианидах, которое удаляет - -электронную плотность от иона металла, что в свою очередь снижает экранирование х-электронов. Указанный эффект приводит к увеличению электронной плотности на ядре и уменьшению 5. Как сильные <т-доноры, так и сильные тг-а (гценторы снижают 5. [c.299]

    При сварке стали 25-20 а-фаза может образоваться и в процессе охлаждения даже однопроходного шва, если он содержит повышенное количество легирующих примесей (4— 5% З и Мо) или концентрация хрома в нем достигает 28— 30%. В аустенитно-ферритных швах а-фаза появляется непосредственно в феррите, чего обычно не бывает в аустените. [c.158]

    Если сталь охлаждать очень быстро (закалка), то -Ре превращается в а-Ре, но углерод не успевает выделиться. Получается другая, термодинамически неравновесная, фаза, а именно, пересыщенный твердый раствор углерода в а-Ре —мартенсит (рис. 3.123г). Он очень тверд, но вместе с тем хрупок. Чтобы придать стали нужные свойства, производят отпуск — выдерживают изделие при повышенной температуре. При этом часть мартенсита распадается на мягкий и вязкий феррит и углерод. В зависимости от температуры и длительности отпуска получаются различные соотношения между твердой и вязкой составляющими — мартенситом и ферритом — и разные размеры их кристаллов. Таким образом, термическая обработка очень сильно влияет на свойства стали. [c.558]


Библиография для Ферри: [c.52]   
Смотреть страницы где упоминается термин Ферри: [c.111]    [c.251]    [c.253]    [c.264]    [c.416]    [c.416]    [c.416]    [c.416]    [c.313]    [c.416]    [c.416]    [c.683]    [c.305]    [c.308]    [c.420]    [c.482]    [c.307]    [c.307]    [c.340]    [c.297]    [c.457]    [c.712]    [c.151]    [c.21]    [c.24]   
Химическая литература Библиографический справочник (1953) -- [ c.84 ]

Химическая литература и пользование ею Издание 2 (1967) -- [ c.106 , c.202 ]

Химическая литература и пользование ею (1964) -- [ c.105 ]

Кристаллические полиолефины Том 2 (1970) -- [ c.92 ]

Трение и износ полимеров (1972) -- [ c.108 ]

Химия изотопов (1952) -- [ c.91 ]




ПОИСК





Смотрите так же термины и статьи:

Ферриты



© 2025 chem21.info Реклама на сайте