Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Релаксация ядерная квадрупольная квадрупольные моменты

    Спин-решеточная релаксация, обусловленная взаимодействием электрических квадрупольных моментов ядер со спином />1. с электрическими полями молекулы — еще один механизм обмена энергией между спиновой системой и решеткой. По этой причине линии в спектрах таких ядер, как Н, М, и др., могут быть очень широкими. Ядерная квадрупольная релаксация может оказать влияние на ядра со спином /=1/2, если они находятся на близком расстоянии от ядра со спином 7>1. [c.61]


    При описании парамагнитной релаксации мы не принимали во внимание квадрупольный момент ядра, который порождается отклонением распределения ядерного заряда от сферической симметрии. Ядра со спиновым числом У, большим 1/2, обычно обладают квадрупольным моментом. Такие ядра взаимодействуют с неоднородным внутрикристаллическим полем, магнитные подуровни энергии возмущены этим взаимодействием неодинаково (рис. 159), и в результате ядерная магнитная резонансная линия для кристаллического образца расщепляется на ряд составляющих линий [10—13]. [c.378]

    Как ядро так и ядро имеют магнитные моменты и могут давать спектры ядерного магнитного резонанса. Правда, ядро имеет спин 1 (см. табл. 1.1) и, следовательно, квадрупольный момент. Связанная с этим быстрая спин-решеточная релаксация (см. разд. 1.5) уширяет сигналы и делает их наблюдение затруднительным. Этих осложнений нет при наблюдении спектра имеющего спин /2, но интенсивность резонансного сигнала и естественное содержание изотопа еще ниже, чем в случае С. Обычно проводят обогащение образцов, хотя известны примеры наблюдения сигналов от необогащенных образцов [29]. [c.52]

    Ядра, обладающие магнитным моментом большим, чем /г — 1, /2 И Т. д., имеют, кроме магнитного, электрический квадрупольный момент. Время релаксации таких ядер слишком мало для того, чтобы можно было получить узкие сигналы. Правда, для них возможно применение другого варианта радиоспектроскопии — ядерного квадрупольного резонанса (ЯКР). Для этого вещество переводят в кристаллическое состояние (если надо, охлаждая жидким азотом) и для полученных сигналов определяют только их резонансную частоту. Это дает информацию и о химическом окружении квадрупольного атома, и о свойствах кристаллической решетки. [c.219]

    Если спин ядра /> /2, то обычно процесс магнитной релаксации происходит очень эффективно. Это определяется наличием у таких ядер электрического квадрупольного момента, который взаимодействует с электрическим полем вокруг ядра. Это электрическое поле возникает во всех случаях, когда симметрия окружения ядра отличается от кубической. Электрический квадруполь-ный момент стремится ориентироваться вдоль градиента электрического поля, который, поскольку это поле имеет внутримолекулярную природу, будет менять свое направление по отношению к приложенному извне магнитному полю при вращении молекулы. Ядерный магнитный момент стремится ориентироваться в том же направлении, что и квадрупольный момент, так что в целом это приведет к усилению релаксации. Обычно этот процесс идет весьма эффективно, поэтому времена Г1 и Гг для ядер с /> /2 обычно очень короткие. Прямое следствие этой [c.394]


    Часто возникает уширение резонансных сигналов протонов, связанных с атомными ядрами, имеющими электрический квадруполь-ный момент. Величина электрического квадрупольного момента служит мерой несферичности распределения электрического заряда в ядре. Электрический квадрупольный момент имеют лишь ядра со спиновым числом >7г- Наиболее распространенным примером ядер этого типа могут служить ядра азота (7 = 1). В молекулах часто существуют очень неоднородные локальные электрические поля. Тепловое движение таких молекул вызывает эффективное взаимодействие ядерного квадруполя с хаотически меняющимися во времени электростатическими полями ядро быстро отдает спиновую энергию решетке. Поэтому ядра, обладающие квадрупольными моментами, обычно имеют малые времена спин-решеточной релаксации, а ЯМР-сигналы протонов, связанных с этими ядрами, соответственно уширены. [c.73]

    Следует отметить, что в приведенных выше формулах нет ядерных квадрупольных моментов, так как они возникают, только когда ядра рассматриваются как частицы с внутренней структурой. Члены взаимодействия, содержащие квадрупольные моменты ядер, важны при рассмотрении, например, явления магнитной релаксации в твердых телах. Их конкретный вид обсуждается во многих книгах (например [12, 11]). [c.370]

    Следующий эффект касается взаимодействия ядер с другими ядрами, обладающими ядерными квадрупольными моментами (т. е. / > 1/2). Простое спин-спиновое расщепление для протона, связанного с таким ядром, может не наблюдаться скорее можно получить широкий одиночный сигнал. Так, например, азот I = = 1) обладает ядер ным квадрунольным моментом, который имеет тенденцию к ограничению продолжительности жизни во всех его трех спиновых состояниях вследствие быстрой продольной релаксации Tl мало) [131]. Следовательно, взаимодействующий с ним протон будет стремиться увидеть только среднее из различных спиновых состояний, и полоса поглощения будет широкой. В пределе широкий сигнал может стать неотличимым от шума [111]. Этот случай может служить примером частичного снятия спин-спинового взаимодействия. При полном прекращении спип-спино-вого взаимодействия сигнал протонного резонанса становится узким. [c.211]

    Спин ядра. При этом разделяют магнитные дипольные ядра (/=1/2) и квадрупольные ядра (/>1). Наличие квадрупольного момента приводит к резкому уменьшению времени ядерной релаксации и, как следствие, к смазыванию мультиплетной структуры спектров. Спектры ЯМР квадрупольиых ядер существенно уширены, так что для их регистрации можно использовать спектрометры широких линий. [c.34]

    Ядра со спином имеют сферически симметричное распределение заряда и поэтому не взаимодействуют с электрическим полем молекулы. Ядра же со спином 1 и более имеют электрические квадрупольные моменты, и можно считать, что распределение заряда у этих ядер имеет форму сфероида, вокруг главной оси которого происходит вращение ядра. Квадрупольный момент может быть положительным (вытянутый сфероид) или отрицательньш (сплюснутый сфероид). Энергии сфероидальных зарядов зависят от их ориентации относительно градиентов окружающего электрического поля. В молекулах определенного типа, в которых преобладает сферическое или тетраэдрическое распределение заряда (например, в ионе аммония ЫН4), электрические градиенты либо отсутствуют, либо незначительны, вследствие чего не происходит возмущения квадрупольного момента за счет колебательных движений молекулы. Однако у большинства молекул градиенты электрического поля значительны и могут взаимодействовать с ядерными квадруполями. В результате колебательные движения остова таких молекул могут вызывать быстрые изменения спиновых состояний. Это еще один механизм обмена энергией между спиновой системой и решеткой, т. е. один из важных вкладов в спин-решеточную релаксацию он может приводить к заметному уширению резонансных сигналов. По этой причине линии в спектрах таких ядер, как или N (квадрупольный момент Q положителен) или О, и (Q отрицателен), могут быть настолько широкими, что их трудно или даже невозможно обнаружить. Ядерная квадрупольная релаксация может также оказывать влияние на ядра со спином /г, если они находятся в достаточной близости от ядра со ОПИНОМ 1. Мы рассмотрим эти вопросы в гл. 13. [c.35]

    После того как в результате исследований с полющью колебательных спектров и дифракционных методов были получены сведения о расположении ядер в люлекулах фторидов ксенона, стало возможным использовать другие физические методы, которые позволяют установить пространственное и энергетическое распределение электронов в этих молекулах. Такие соединения очень удобны для изучения методом ядерного магнитного резонанса [16], поскольку естественное содержание ядер Р(5 = 2) составляет 100%, 12 Хе (5=1/2)25%, 131Хе(5 = 3 2) 25%. Между ядрами охе и Р может иметь место только магнитное взаимодействие, однако в случае ядер Хе и Р возможно также взаимодействие между квадрупольным моментом и любым градиентом электрического поля, существующим в области ядра ксенона. Полностью разрешенный спектр ЯМР молекулы Хер4 для ядер Р содержит две линии, обусловленные взаимодействием с Хе. Если бы молекула была построена в виде тетраэдра, в спектре следовало ожидать появления четырех линий за счет взаимодействия между Хеи Р однако в результате квадрупольной релаксации они должны слиться в одну линию. Простой вид спектра свидетельствует об эквивалентности всех атомов фтора, однако, как уже отмечалось выше, не следует забывать о масштабе времени, к которому относятся опыты по ядерному магнитному резонансу. На основании ширины линий можно также установить, что среднее время жизни атома фтора, связанного с атомом ксенона (по спектрам в растворе НР), больше [c.405]


    Другим эффектом, который приводит к отличию наблюдаемых спектров от предсказанных по уравнению (8-12), является ядерная квадрупольная релаксация. Часто расщепление не наблюдается, так как происходит быстрая релаксация, вызывающая столь же быстрое изменение спинового состояния ядра, с которым связан исследуемый элемент. Это эквивалентно быстрому обмену, при котором исследуемое ядро оказывается связанным со многими различными расщепляющими ядрами с разными спиновыми состояниями. В обоих случаях обнаружить можно только усредненное спиновое состояние. Промежуточные скорости обмена [между медленным обменом, когда применимо уравнение (8-12), и быстрым обменом] часто приводят к ушире-нию резонансной линии. В некоторых случаях сигнал протонного резонанса уширяется вследствие этого эффекта настолько, что его вообще не удается отличить от фона. Релаксационные эффекты часто наблюдаются у ядер, имеющих квадрупольные моменты, поскольку у таких ядер происходит очень эффективная релаксация из-за флуктуаций градиентов электрического поля в результате теплового движения полярных молекул растворенного вещества и растворителя. Из-за этого эффекта протонный спектр Ы Нз (Ы имеет /=1) состоит из трех очень широких сигналов, тогда как в отсутствие такого эффекта спектр (у / = /2) представляет собой узкий дублет. В случае друг,и>с ядер, у которых возмржна еще более быстрая релаксд- [c.292]


Смотреть страницы где упоминается термин Релаксация ядерная квадрупольная квадрупольные моменты: [c.725]    [c.521]    [c.280]    [c.295]    [c.280]    [c.352]   
Физические методы в неорганической химии (1967) -- [ c.292 ]




ПОИСК





Смотрите так же термины и статьи:

Квадрупольная релаксация

Момент ядерный



© 2024 chem21.info Реклама на сайте