Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Релаксационные процессы эффективное время релаксации

    Возможность генерации излучения в этой схеме определяется благоприятным сочетанием скоростей различных релаксационных процессов, характерных для рабочих уровней. Нижний рабочий уровень 10 0 и исходный для накачки уровень 02°0 благодаря ферми-резонансу (взаимодействие колебательных уровней близкой энергии и подходящей симметрии, в результате которого уровни отталкиваются друг от друга и приобретают смешанный характер в данном случае смешаны фундаментальное валентное полносимметричное колебание и обертон дважды вырожденного деформационного колебания молекулы СОг) сильно взаимодействуют друг с другом. Из-за этого взаимодействия и небольшого различия в энергии уровней ( 103 см ) нарушенное соотношение их термодинамически равновесных заселенностей восстанавливается при столкновениях молекул весьма быстро, за время с-Па, сравнимое с временем релаксации вращательных уровней. Кроме того, молекулы в состояниях 10°0 и 02°0 эффективно теряют энергию возбуждения при столкновениях с менее колебательно-возбужденными и невозбужденными молекулами. В частности, время колебательной релаксации нижнего рабочего уровня 10 0 с-Па. Верхний же рабочий уровень 00°1 [c.180]


    Эффективное время релаксации — одно из времен фактически существующего релаксационного спектра, характерное для процесса перегруппировки элементов структуры полимера, определяющего сопротивление разрушению при данном режиме. Для хрупкого разрушения это время меньше, чем для а-процесса. [c.26]

    Катализатор наносили на магнитно-индифферентный носитель, содержащий воду, и изучали время релаксации протонов воды. Затем готовили водный раствор соли (содержащий катионы, входящие в состав катализатора) с такой ее концентрацией, чтобы время релаксации протонов характеризовалось той же самой величиной, как система носитель — катализатор — вода. На основании этих данных определяли активность катализатора. При этом было принято упрощающее допущение, что эффективность действия иона на поверхности отличается от его эффективности в гомогенной среде только на коэффициент экранирования, а релаксационный процесс не изменяется. [c.211]

    Остановимся теперь на особенностях колебательной релаксации двухатомных молекул, свяшппых с ангармоничностью колебаний. В УГ-процессах ангармоничность проявляется в том, что, вследствие уменьшения величины колебательного кванта по мере роста квантового числа, вероятности одноквантовых переходов растут с номером уровня v быстрее, чем по линейному закону [см. (14.8)). Поэтому релаксационное уравнение для средней энергии несправедливо, а эффективное время колебательной релаксации, определенное из условия [c.99]

    Наконец, мы сами можем частично управлять величинами Т , контролируя доступность подходящих путей релаксации. Простейшей причиной ускорения релаксации служит присутствие в образце парамагнитных веществ, которые с помощью своих неспаренных электронов эффективно инициируют ЯМР-переходы. Их можно специально добавлять в образец, если нужно сократить время релаксации для ускорения эксперимента или для повышения точности количественных измерений. Для этой цели обычно используется ацетилацетонат хрома(Ш). В то же время приготовленные в обычных условиях образцы неизбежно содержат примеси пара.магнитного вещества - растворенного кислорода, которые нужно удалить обезгаживанием, если мы хотим получить самые узкие из возможных лиш1и или собираемся проводить измерения ядерного эффекта Оверхаузера или других параметров релаксационных процессов. [c.133]

    Конформационные превращения — основа развития высокоэластических деформаций. Однако деформация в значительной степени зависит также от плотности флуктуационной сетки, которая в свою очередь определяется скоростью деформации. С изменением плотности флуктуационной сетки меняется эффективная длина участков цепей между соседними микроблоками или зацеплениями. При сдвиговом течении вследствие различия скоростей перемещения отдельных слоев жидкости внешнее усилие в виде напряжения сдвига передается через проходные участки макромолекул, в результате чего они начинают ориентироваться. Под действием этих же сил путем последовательного движения звенья цепи выходят из микроблоков, т. е. узлы флуктуационной сетки разрушаются и увеличивается средняя длина проходных участков, которые являются основным источником накопления мгновенной упругой и высокоэластической деформации. Разрушение узлов флуктуационной сетки измеряется числом элементарных переходов звеньев из одного положения в другое, следовательно, этот процесс протекает во времени. Поэтому чем больше плотность флуктуационной сетки в начале развития деформации, тем больше время запаздывания и наоборот при переходе от ориентированного состояния к равновесному время релаксации меняется в зависимости от степени ориентации цепи и способности макромолекул к образованию новых узлов флуктуационной сетки. Поскольку все конформационные переходы макромолекул взаимосвязаны, они зависят от межмолекулярного взаимодействия и гибкости цепи, а следовательно, в значительной степени определяются температурой. С изменением температуры весь релаксационный спектр смещается и деформируется. [c.57]


    Обсудим сперва спин-решеточную релаксацию. Поскольку молекулы содержат магнитные ядра, беспорядочное движение молекул приводит к тому, что эти ядра создают флуктуирующие магнитные поля. Если такое поле ориентировано должным образом и имеет соответствующую фазу (для того чтобы совпасть с частотой прецессии), ядро из верхнего состояния может возвратиться в основное, передав часть своей избыточной энергии решетке в виде вращательной или поступательной энергии. Такой механизм спин-решеточной релаксации называется ядерным дипольным взаимодействием. Полная энергия системы рри таком процессе не изменяется, и эффективность релаксационного механизма зависит, во-первых, от величины локальных полей и, во-вторых, от. скорости флуктуации локальных полей. Можно определить величину, характеризующую скорость такого процесса и называемую временем спин-решеточной релаксации Ту. Большое значение Ту указывает на малую эффективность этого процесса и большое время жизни возбужденного состояния. В отсутствие других эффектов при большом Ту должна возникать узкая линия, как предсказывает уравнение (8-14). [c.304]

    Ширина линий сигналов также представляет существенный интерес. В результате движения электронов, столкновений с примесями и других дефектов время спин-решеточной релаксации и результирующие ширины линий спектра критически зависят от определенных явлений электронного рассеяния. Например, большие атомы таких примесей, как кремний, присутствующий в количестве 100 млн , могут расширять линии спектра ЭПР [24]. Эти эффекты иллюстрируют данные рис. IX. 18. Отметим, что линии сигнала сужаются примерно в 5 раз, когда образец очищен с применением хлора. Эффект обратим при обратной диффузии примесей в материал. Наряду с этим, процесс очистки не влияет на удельное электрическое и магнитное сопротивления. Более того, не замечено изменений ё -фактора или эффективной концентрации спинов, что указывает на релаксационную природу явления. [c.202]

    Максимум тока ТСД в области комнатных температур связан, по-видимому, тоже со смещенными носителями зарядов, захваченными в мелкие ловушки. Время релаксации этого заряда при условиях эксплуатации пьезоэлементов (комнатная температура 20°С) невелико, поэтому наличие этого релаксационного процесса может влиять только на время стабилизации пьезомодулей. По полученным значениям гетерозарядов по формуле Де(а) = = Р1воЕ рассчитали инкременты диэлектрической проницаемости в области дипольно-сегментальной релаксации. Эти значения Де (а) характеризуют число диполей и значения эффективных дипольных моментов сегментов макромолекул, находящихся в аморфной фазе полимеров. По формуле Ле(р)=а/ео п рассчитали также Де(р), которые характеризуют объемный заряд. Результаты расчетов приведены в табл. 9. [c.120]

    Рассмотрим два примера. Первый пример — исследование связывания лиганда ферментом в ходе иекатализируемой реакции. При этом могут произойти два физических события связывание и индуцируемое лигандом конформационное изменение фермента. Чтобы установить число промежуточных стадий и определить соответствующие им константы скорости, прежде всего необходимо определить число времен релаксации и найти их концентрационную зависимость. В идеальном случае число времен релаксации будет равно числу стадий данной реакции. Если найдено даже одно время релаксации и его концентрационная зависимость нелинейна, это может означать, что процесс протекает в две стадии [например, уравнения (4.71) и (4.74)], Далее стоит воспользоваться несколькими физическими методами (например, исследовать флуоресценцию и поглощение лиганда и белка), поскольку некоторые стадии могут быть выявлены только с помощью одного из этих методов. В ходе рассматриваемой реакции могут протекать и другие физические процессы, например отдача или присоединение протона или изменение степени агрегации белка. В первом случае весьма полезен еще один метод — измерение pH, для чего можно использовать просто цветные индикаторы. Агрегация осложняет кинетические исследования, однако ее можно обнаружить и количественно охарактеризовать, что также даст дополнительную информацию. Для исследования простых реакций релаксационные методы часто оказываются эффективнее струевых, поскольку позволяют изучать более быстрые процессы. Однако иногда метод остановленной струи более ценен, например, при исследовании процессов, слишком медленных, чтобы применять метод температурного скачка. Кроме того, некоторые эксперименты (такие, как исследование влияния сильных изменений pH) можно осуществить только в том случае, если использовать методы, включающие быстрое смешивание реагентов (хотя небольшого изменения pH можно добиться, применив метод темпера- [c.151]


    Представление о релаксационном механизме аномалии вязкости позволяет рассмотреть и влияние гидростатического давления на эффективную вязкость. Существующая интерпретация температурной зависимости вязкоупругих свойств сводится к учету влияния свободного объема на подвижность молекулярных цепей [14, с. 269]. Повышение температуры, сопровождающееся уменьшением плотности, приводит к увеличению свободного объема, при этом облегчается перегруппировка молекул и соответственно уменьшается время релаксации. Понижение температуры сопровождается возрастанием плотности и соответствующим сокращением свободного объема. В результате процессы перегруппировки полимерных молекул затрудняются, что, в свою очередь, приводит к увеличению времени релаксации. По аналогии с температурно-временной суперпозицией пьезоэффект подчиняется пьезовременной суперпозиции. Это означает, что влияние гидростатического давления на вязкость при любой скорости сдвига можно учесть введением коэффициента приведения  [c.75]

    Для релаксационного крутильно-колебательного движения времена релаксации пропорциональны времени вращательной диффузии звена цепочки Твр в среде с локальной вязкостью т1лок и фактору К1кТ)< , где К — крутильная силовая постоянная, а = = 1—3 в зависимости от принятой модели, причем для чисто поперечных релаксационных процессов а л 1—3, а для продольных а = 3. Тогда эффективная энергия активации  [c.16]

    Измерения различных ионов показали, что помимо влияния процесса комплексообразования величина момента может зависеть от времени Tg. Чем меньше X,, тем слабее действие парамагнитного иона на релаксацию протонов. ВлиАние Т, объясняется тем, что эта величина, различная для различных ионов, может служить эффективным временем корреляции в парамагнитных растворах. Иначе говоря, быстрое рассеяние энергии, полученной протонами, происходит в парамагнитных растворах тогда, когда собственный релаксационный цикл магнитного момента парамагнитного иона близок по величине к тому же циклу резонирующих ядер. Последний определяется как т так и временем контакта магнитного иона и протона Тд. Время же электронной релаксации определяется состоянием электронных энергетических уровней иона, находящегося в магнитном поле Яф. Если величины расщепления велики, то т велико — ионы в S = и эффективном -состоянии Мп (П), Fe (П1), Gd (П1). Если расщепление мало и переходы между уровнями могут происходить часто, то т, мало. Это характерно для ионов с выраженной спин-орбитальной связью — Ni (П), Со (П), большинство ионов 216 [c.216]


Смотреть страницы где упоминается термин Релаксационные процессы эффективное время релаксации: [c.261]    [c.172]    [c.459]    [c.68]    [c.477]   
Введение в физику полимеров (1978) -- [ c.261 ]




ПОИСК





Смотрите так же термины и статьи:

Процесс эффективности

Релаксация время

Эффективность релаксационная

время релаксации Сжу время релаксации при



© 2025 chem21.info Реклама на сайте