Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бензол энергетические характеристики

    Отсюда следует, что и производная полной поверхностной энергии по температуре тоже должна быть равна нулю [см. уравнение (11.27)], т. е. д1]в/дТ = , а это означает независимость полной поверхностной энергии от температуры. Для примера отметим, что вторые производные поверхностного натяжения по температуре для воды II бензола равны соответственно —0,00048 и +0,00012. Так как поверхностное натяжение снижается с повышением температуры, а полная энергия от нее не зависит, то в соответствии с уравнением (11. 19) теплота образования единицы поверхности увеличивается в этом же наиравлении. Эти зависимости показаны иа рис. П.З. При критической температуре исчезает поверхиость и соответственно снижаются до нуля ее энергетические характеристики. [c.30]


    Поскольку каталитические реакции с участием водорода осуществляются через стадии образования связи между поверхностью катализатора и водородом, естественными оказались поиски корреляций каталитической активности металлов с такой энергетической характеристикой их поверхности, как прочность адсорбционной связи металл — водород [24, 68]. Было показано, что действительно существует зависимость каталитической активности некоторых металлов в реакциях с участием молекулярного водорода от энергии связи Сме-н- На рис. 7 представлены вулканообразные кривые, выражающие такую зависимость для реакции гидрирования этиленовых соединений. Общим для этих кривых является то, что на вершинах кривых находится родий, обладающий оптимальной энергией связи Ме—Н для гидрирования этиленовых соединений. При гидрировании соединений, содержащих иные типы химических связей, оптимальными оказываются катализаторы с другими значениями Сме-н Для гидрирования бензола — платина, ацетона — никель и платина. [c.65]

    Экспериментально при озвучивании 0,1 — 1%-ных растворов полистирола в бензоле с частотой 0,35 0,75 1,0 1,5 2,0 Мгц при интенсивности 5—250 вт см установлено, что g-фактор более полно и обобщенно отражает энергетическую характеристику процесса ультразвуковой деструкции, чем просто время озвучивания. [c.247]

    Расчеты дают для первого случая длинноволновое смещение полосы 2800 А, а для второго случая — коротковолновое. Поскольку экспериментально наблюдается коротковолновое смещение, то мы считаем, что для анилина реализуется связь вида П. Она является и энергетически более выгодной. Аналогично было исследовано влияние растворителя на электронные характеристики других замещенных бензола [8, 9]. [c.159]

    Так же как в низкомолекулярных сопряженных системах, с ростом цепи сопряжения (например, при переходе от бензола к пентацену) изменяется энергетическая характеристика вещества и соответственно его электрические и магрштные свойства и реакционная способность. Свойства полимеров с системой сопряжения зависят от молекулярной массы, и вследствие этого полимергомологи могут значительно различаться по свойствам. С возрастанием молекулярной массы полимеров изменяется длииа сопряженной системы и ее энергетическая характеристика— значение энергии возбуждения. С изменением последней изменяется реакционная способность и физические свойства молекул. Реакционная способность функциональных групп полимера, если они входят в систему сопряжения, зависит от его молекулярной массы. [c.412]


    Значительные энергетические характеристики л-л-взаимодейст-вия, имеющие место в молекулярных комплексах металлопроизводных гематопорфирина с бензолом, очевидно, должны оказывать влияние на [c.309]

    Для оценки теплоты сгорания органической массы рассчитаны удельные тепло-энергетические характеристики отдельных представителей ароматических гомологических рядов с разным числом бензольных колец. Удельные теплоты сгорания соединений изменяются в пределах 38,7 - 40,6 МДк/кг, уьЕньшаясь с ростом количества конденсированных колец. Если исключить из рассмотрения бензол, то средняя теплота сгорания ароштических соединений с числом колец два -четыре составит 39,6 МДж/кг, а наибольшее отклонение от средней величины - около 2 %. Молярная энтальпия сгорания на один атом углерода является величиной, отражающей особенности строения углеводородов. Так, для соединений с числом колец, равным двум, на один углерод близка к 518 кДж/моль и не зависит от вида боковых цепей. [c.86]

    Сравнительное изучение связи АН...В, где В — атом азота вторичных и третичных аминов, открывает возмол ность критической оценки двух параметров, часто используемых при построении корреляционных зависимостей между спектроскопическими или энергетическими характеристиками комплексов с водородной связью и характеристиками протоноакцепторной способности молекул, образующих этот комплекс — ионизационным потенциалом и константой основности аминов. Так как из экспериментальных данных известно, что при ионизации аминов удаляются в первую очередь электроны неподеленной пары атома азота, принимающие участие и в образовании водородной связи, то первый ионизационный потенциал молекулы может служить параметром для оценки протоноакцепторной способности. В ряде работ [1—3] было найдено, что низкочастотный сдвиг полос поглощения в колебательном спектре, обусловленный образованием комплекса со стандартным донором протона АН, систематически возрастает с уменьшением величины ионизационного потенциала, определяюш.его энергию отрыва я- или я-электрона, участвующего в водородной связи. В [4] показано существование приближенной линейной зависимости между потенциалом ионизации алкилпроизводных бензола и свободной энергией образования комплексов с фенолом. Наличие такого рода корреляционных зависимостей служит согласно [5] доводом в пользу донорноак-цепторного механизма взаимодействия в комплексах с водородной связью. [c.30]

    Все эти положения теории Полинга были сформулированы автором на основании изучения им совместно с Уэландом энергетических характеристик органических соединений методом валентных связей. Так, в 1933 г., приняв я-электронную модель сопряженных систем Хюккеля и значительно упростив расчеты по методу валентных связей, Полинг и Уэланд [106] впервые рассчитали энергии стабилизации бензола и нафталина. Оперируя набором канонических структур с неперекрещивающи-мися валентными связями, авторы определили значение энергии резонанса бензола, равное 1.1055 а, где а — обменный интеграл (ос для бензола составляет 1,5 эв). Вскоре Уэланд разработал метод определения числа канонических структур для ненасыщенных соединений с открытой цепью и ароматических молекул [108]. [c.43]

    Отсюда следует, что и прон водная полной повер.лностпой энергии по температуре тоже должна быть равна нулю [см. уравнение (11.35)], т. е. ди,/ОТ = 0. а это означает независимость полной повер.хностной энергии от температуры. Для при-,мера укажем, что вторые производные повер.хностного натяжения по темпе[)атуре для воды и бензола равны соответственно —0,00048 и +0,00012. Так как поверхностное натяжение снижается с повышением температуры, а полная энергия от нее не зависит, то в соответствии с уравнением (11.27) теплота образования единицы повер.хности увеличивается в этом же направлении. Энтропию, как производную повер.хностного натяжения по температуре со знаком минус, в таких случаях можно приравнять к постоянной а [уравнение (11.31)], которая не зависит от температуры. Температурные зависимости основных термодинамических параметров показаны на рис. 11,4. При критической температуре исчезает межфазная поверхность и соответственно снижаются до нуля ее энергетические характеристики. [c.37]

    Так же как в низкомолекулярных сопряженных системах, с ростом цепи сопряжения (например, при переходе от бензола к пентацену) изменяется энергетическая характеристика вещества и соответственно его электрические и магнитные свойства и реакционная способность. Свойства полимеров с системой сопряжения зависят от молекулярного веса и вследствие этого полимергомологи могут зна-чи-рсльно различаться по свойствам. С возрастанием молекулярного веса полимеров изменяется длина сопряженной системы и ее энергетическая характеристика — значение энергии возбуждения. С измене- [c.486]

    Проведенное исследование позволило выяснить некоторые закономерности образования л-л-комплексов природных металлопорфиринов. Данные по физико-химическим характеристикам выявленных молекулярных комплексов (табл. 6.1.3) свидетельствуют о значительных различиях в способности MPf к специфическим взаимодействиям с бензолом, связанных, очевидно, с влиянием электронной структуры центрального атома металла и функциональных заместителей. Как было показано ранее [5], введение металла создает благоприятные условия для л-л-комплексообразования. Например, 2пТРР образует с СбНй устойчивый молекулярный комплекс состава 1 2, в котором обе молекулы растворителя энергетически равноценны, в то время как со-308 [c.308]



Смотреть страницы где упоминается термин Бензол энергетические характеристики: [c.303]    [c.304]    [c.316]    [c.271]    [c.183]    [c.11]    [c.313]    [c.315]    [c.164]   
Полициклические углеводороды Том 1 (1971) -- [ c.74 ]




ПОИСК





Смотрите так же термины и статьи:

Характеристики энергетические



© 2025 chem21.info Реклама на сайте