Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакционная способность функциональных групп в полимерах

    При полимераналогичных превращениях реакционная способность функциональных групп и атомов не зависит от молекулярной массы полимера . Так, например, реакции щелочного гидролиза (размыкание кольца) поливинилпирролидона [c.212]

    Реакции концевых групп полимера являются макромолекулярными реакциями. В них участвует вся макромолекула, выступая как монофункциональное соединение с большим и сложным радикалом, причем реакционная способность функциональной группы не зависит от размера радикала. Если на концах каждой макромолекулы полимера содержится только по одной функциональной группе, то число функциональных групп обратно пропорционально значению молекулярной массы полимера. На этом основаны химические методы определения среднечисловой молекулярной массы полимеров. [c.223]


    Превращение функциональных групп у полимеров протекает с меньшей скоростью, чем у низкомолекулярных веществ. Это связано с влиянием на реакционную способность функциональных групп полимеров структуры их цепей (изоляция функциональных групп, характер соседних групп), формы макромолекул (рыхлый или плотный клубок), фазового состояния полимеров (кристаллическое или аморфное). Перечисленные факторы определяют доступность функциональных групп макромолекул для химического реагента. [c.15]

    Реакционная способность функциональных групп полимеров в общем не отличается от реакционной способности аналогичных групп низкомолекулярных соединений Однако полимеры [c.34]

    Для простоты здесь предположили, что реакционная способность функциональных групп полимера не зависит от длины макромолекулы и от их положения в цепи. [c.108]

    Если в результате превращения каждой функциональной группы изменяется реакционная способность только ее ближайших соседей, то в условиях эксперимента действительно реализуется принятая модель макромолекулярной реакции, кинетика которой может описана, например уравнением (П1.7). Установление такой возможности является первоочередной задачей кинетического исследования и позволяет предположить, что изменение в ходе реакции взаимодействия полимер — растворитель, а также конформационные и электростатические эффекты проявляются в этом случае исключительно как составные части эффекта соседних звеньев. На этой основе можно уже решать следующую задачу — интерпретацию механизма реакции, включающую, в частности, оценку вклада каждого из перечисленных факторов в результирующее изменение реакционной способности функциональных групп полимера в ходе его химического превращения. [c.170]

    Влияние соседних групп, изменяющее реакционную способность функциональной группы полимера, по-видимому, количественно не отличается от аналогичного влияния в бифункциональных низкомолекулярных аналогах. Это влияние имеет существенное значение только в тех случаях. [c.16]

    Существенное различие в реакционной способности функциональных групп может возникать и в ходе реакции, превращая часть их в нереакционноспособные и тем самым уменьшая возможную функциональность. Детальное изучение неравновесной поликонденсации дихлораигидридов м- и и-карборандикарбоновых кислот с ароматическими тетрааминами [93, 94] показало, что если это взаимодействие проводить при -30- -5 °С очень быстро (за 2-3 мин), образуются нерастворимые сшитые полимеры, так как три аминогруппы тетраамина вступают в реакцию с дихлорангидридом  [c.20]


    Как уже указывалось, реакционная способность функциональной группы в макромолекуле такая же, как реакционная способность соответствующей функциональной группы низкомолекулярного соединения. Для реализации равной реакционноспособности необ.ходимо, по крайней мере, чтобы реакция была гомогенна, протекала в жидкой среде, а исходные, промежуточные и конечные продукты были в этой среде растворимы. Однако на практике выполнить эти условия довольно трудно и поэтому реакцию низкомолекулярного соединения с полимером можно представить как протекающую через ряд последовательных стадий. Для одной макромолекулы эти стадии можно схематически изобразить следующим образом  [c.276]

    Реакционная способность функциональных групп в полимерах зависит от таких характеристик макромолекул, как локальная конформация вблизи реакционного центра, скорость конформа-ционных переходов, взаимодействие полимер — растворитель [c.43]

    Итак, представления о взаимодействии адгезива с субстратом, лежащие в основе молекулярной теории адгезии, не могут быть ограничены перечнем сил, возникающих на границе раздела адгезив — субстрат. Эти представления значительно углублены и расширены. Силы взаимодействия адгезива с субстратом следует анализировать с квантово-механических позиций, учитывая, что во взаимодействие вступают не изолированные частицы, а конденсированные тела. Что касается химизма взаимодействия адгезива с субстратом, то здесь нужно учитывать специфические особенности реакционной способности функциональных групп в макромолекулах. Специфика полимерной природы изучаемых адгезивов проявляется также и в закономерностях адсорбции. Выявление закономерностей адсорбции полимеров на твердых поверхностях расширяет представления об адгезии. Существенным дополнением к данным о механизме взаимодействия адгезива с субстратом являются результаты исследования каталитических превращений. Возможность каталитических реакций при установлении контакта полимера с твердой поверхностью в ряде случаев не вызывает сомнений, и учитывать эти превращения при анализе механизма адгезии необходимо. Возможно, что иногда эффект полисопряжения может играть в процессе адгезии важную роль об этом свидетельствуют полученные нами экспериментальные данные. [c.44]

    Поликонденсационный метод синтеза сетчатых полимеров занимает, пожалуй, особое место среди других способов как по своей роли в существующей технологии производства этих полимеров и материалов на их основе, так и в историческом аспекте именно на примере реакции поликонденсации формировались первые представления о закономерностях образования и структуре сетчатых полимеров. С точки зрения химии возможности синтеза сетчатых полимеров поликонденсационным методом неисчерпаемы, так как может быть использован практически весь арсенал известных химических реакций присоединения и замещения. Однако это обстоятельство порождает и определенные сложности, связанные с неравной реакционной способностью функциональных групп, изменением ее в ходе реакции и т. п. Поэтому в настоящей главе этим вопросам уделено большое внимание. [c.42]

    Реакционная способность функциональных групп не зависит от молекулярного веса полимера, если молекулярный вес превышает несколько сотен грамм на моль. Практически верхний предел молекулярных весов, определяемых с помощью анализа концевых групп, составляет 50 000. [c.109]

    Различием в реакционной способности функциональных групп, которое возникает в ходе реакции образования полимеров, уменьшая их возможную функциональность и тем самым регулируя конструирование полимерной цепи. [c.25]

    Исследования последних лет показали, что во многих случаях как полимеризации, так и поликонденсации реакционная способность функциональных групп подчиняется другим закономерностям. Это поставило под сомнение всеобщность принципа равной реакционной способности. Особое значение данная проблема приобретает в поликонденсационных процессах, где в большинстве случаев после исчерпания мономеров на первых стадиях реакции формирование макромолекул происходит за счет взаимодействия концевых фупп образовавшихся олигомеров и полимеров. [c.52]

    По существу, все синтезируемые поликонденсацией полимеры, как впрочем и все другие синтетические полимеры, в большей или меньшей степени являются разнозвенными. С одной стороны, эта разнозвенность в определенных пределах может создаваться сознательно, а с другой - она возникает стихийно. Примером сознательно создаваемой разнозвенности является рассмотренное нами выше получение поликонденсацией смешанных и блок-сополимеров разного типа при совместной поликонденсацни нескольких реакционноспособных бифункциональных веществ. Знание закономерностей таких процессов позволяет регулировать их протекание и тем самым разнозвенность строения получаемой полимерной цепи. Однако и в этих процессах имеются стихийные моменты, обуславливающие возникновение стихийной разнозвенности в сознательно создаваемой структуре. Ответственными за них могут быть как кинетические факторы, определяемые различием в реакционной способности функциональных групп, так и различные побочные процессы. [c.91]


    Определение функциональных групп, находящихся в полимерной цепи, химическими методами основано на их непосредственном количественном взаимодействии с подходящими реагентами без предварительного разрушения цепи. Как правило, реакционная способность функциональных групп при переходе от мономера к полимеру изменяется мало, однако следует иметь в виду, что химические реакции функциональных групп полимеров из-за большой молекулярной массы и сложной структуры макромолекул имеют особенности, которые необходимо учитывать при выборе реагентов. [c.90]

    К реакциям полимеров также относятся процессы взаимодействия между макромолекулами, закономерности которых еще мало изучены все же уже в настоящее время ясно, что обычные представления химии низкомолекулярных соединений о реакционной способности функциональных групп нельзя механически переносить на реакции макромолекула — макромолекула. [c.597]

    В развитии наших представлений о реакционной способности функциональных групп макромолекул можно выделить два исторических этапа. На первом из них, начавшемся в 30-х годах нынешнего столетия, определяющую роль сыграл выдвинутый Флори принцип так называемой равной реакционной способности [18, 19]. Этот принцип гласил, что реакционная способность функциональной группы не зависит от того, присоединена ли она к длинной цепочке любой длины или нет. Этот принцип, сформулированный при анализе реакций поликонденсации и впоследствии многократно подтвержденный при изучении самых различных реакций с участием полимеров, сыграл весьма важную положительную роль, показав, по существу, что макромолекулярные вещества, как и низкомолекулярные, способны к ряду химических превращений, которые протекают по тому же механизму и даже с теми же скоростями. Не следует забывать, что расширение в 30-х — 40-х годах [c.14]

    Алфреем [20, с. 9] были сформулированы условия, при которых мы вправе ожидать равной реакционной способности функциональных групп как в полимере, так и в его низкомолекулярном аналоге в реакции, в которой вторым реагентом заведомо является низкомолекулярное вещество  [c.15]

    При изучении кинетики и механизма химических превращений полимеров первичной задачей является нахождение параметров, количественно характеризующих реакционную способность функциональных групп в макромолекулах. Найденные параметры далее могут быть использованы для разных целей, в частности, и для сопоставления реакционной способности полимеров и соответствующих низкомолекулярных соединений. Такое сопоставление, имеет, безусловно, глубочайший смысл, стимулируя поиски конкретных физических моделей, на основе которых можно было бы количественно интерпретировать связь между длинноцепочечной природой полимеров (т. е. тем главным, что отличает полимер от низкомолекулярного аналога) и их реакционной способностью. И не случайно в работах последних лет, посвященных анализу закономерностей макромолекулярных реакций, наибольшее внимание уделяется именно сравнению кинетики химических превращений полимеров и их аналогов. Однако при этом сложность протекания макромолекулярных реакций нередко рассматривается как неодолимое препятствие, не позволяющее вскрыть относительно простые закономерности изменения реакционной способности функциональных групп в полимерах с глубиной превращения (как это можно сделать в случае низкомолекулярных соединений). [c.169]

    Так, Харвуд в цитированной работе 2] утверждает, что количественное описание кинетики полимераналогичных превращений с эффектом соседа невозможно без учета взаимодействия полимер-растворитель и изменения этого взаимодействия, а также изменения конформации полимера с конверсией. Такое утверждение основано, очевидно, на смешении двух тесно связанных между собой, но все же различных задач количественного исследования эффекта соседних звеньев формально-кинетического описания процесса и установления самого механизма влияния соседних звеньев на реакционную способность функциональных групп в макромолекулах. [c.169]

    Химические методы анализа являются наиболее распространенными способами определения концентрации концевых групп в полимерах. Теоретической базой таких определений служит независимость реакционной способности функциональных групп от молекулярной массы полимера. Выбор метода определения зависит от числа, химической природы и соотношения концевых групп в макромолекуле, растворимости полимера, полярности среды, устойчивости полимера и растворителя к окислению. Соединения (реагенты и растворители), используемые для анализа, должны быть тщательно очищены от примесей. При определении концевых групп необходимо проводить контрольный опыт (без полимера) и в расчеты вносить соответствующие поправки. [c.111]

    Основные научные работы относятся к химии и технологии полимеров. Усовершенствовал некоторые технологические процессы производства синтетического каучука, создал эффективные фосфорорга-нические и другие стабилизаторы и ингибиторы. Разработал методы синтеза олигомеров с реакционно-способными функциональными группами, на основе которых получаются герметики, модификаторы полимерных композиций и присадки к смазочным маслам. [c.234]

    Уже эта простая классификация показывает, что химические реакции полимеров существенно отличаются от реакций низкомолекулярных соединений. Достаточно достоверно установлено, что реакционная способность функциональных групп не меняется в зависимости от того, содержатся ли они в обычных молекулах или в составе макромолекулярной цени. Если скорость диффузии низкомолекулярного компонента в полимере не является лимитирующим фактором, то скорость химической реакции определяется соударениями реагирующих частиц, и величины энергии активации реакций соответствующих функциональных групп в высокомолекулярных и в низкомолекулярных соединениях одинаковы. Это подтверждается на ряде реакций гидролиза, ацетилирования и др. [c.33]

    Однако влияние высокомолекулярной природы вещества на протекание реакций все же сказывается. Рассмотрим кратко наиболее важные отличия реакций полимеров от соответствующих реакций низкомолекулярных соединений. Реакционная способность функциональных групп в макромолекуле может измениться, если одна из соседних групп уже прореагировала с каким-либо низкомолекулярным реагентом, а другая — нет, так как при этом в цепи возникает неоднородность. Так, если реагируют низкомолекулярные спирт и кислота, то образуется сложный эфир определенного строения. Если [c.33]

    Так же как в низкомолекулярных сопряженных системах, с ростом цепи сопряжения (например, при переходе от бензола к пентацену) изменяется энергетическая характеристика вещества и соответственно его электрические и магрштные свойства и реакционная способность. Свойства полимеров с системой сопряжения зависят от молекулярной массы, и вследствие этого полимергомологи могут значительно различаться по свойствам. С возрастанием молекулярной массы полимеров изменяется длииа сопряженной системы и ее энергетическая характеристика— значение энергии возбуждения. С изменением последней изменяется реакционная способность и физические свойства молекул. Реакционная способность функциональных групп полимера, если они входят в систему сопряжения, зависит от его молекулярной массы. [c.412]

    В первой части обсуждены тенденции развития области поликонденсации. На базе современных данных проанализированы особенности равновесной и неравновесной поликонденсации, константы равновесия различных процессов, влияния на них строения исходных веществ, природы реакционной среды, температуры реакции, включая равновесие в таких новых, сложно протекающих процессах, как поликонденсация тетранитрилов ароматических тетракарбоновых кислот с диаминами. Проанализированы механизм и закономерности формирования макромолекул в процессах поликонденсации, в том числе формирования микроструктуры полимерной цепи в процессах сополикон-денсации (образование статистических и блок-сополимеров), получения полимеров, построенных по типу "голова к хвосту" и конформационно-специфической поликонденсации, с учетом химического строения исходных веществ, функциональности, реакционной способности функциональных групп, природы реакционной среды, возможных побочных процессов. Рассмотрена проблема разнозвенности поликонденсационных полимеров и показана необходимость ее познания для создания полимеров с желаемым комплексом свойств. Проанализированы данные о влиянии природы реакционной среды на физическую структуру синтезируемых поликонденсацией полимеров с жесткими цепями макромолекул и показаны возможные пути регулирования конформаций макромолекул в процессе синтеза. [c.4]

    Более надежный экспериментальный подход для решения этой задачи был предложен Харвудом, назвавшим его метод двойного радиометрического титрования [21, 22]. Этот метод был применен для оценки констант скоростей кислотного гидролиза полиметилмет-акрилата различной микроструктуры. Суть подхода заключается в следующем. Полимер, содержащий радиоактивную метку в каждом мономерном звене и обладающий хотя и однотипными по химическому строению, но с разной скоростью реагирующими группами, подвергается полимераиалогичной реакции, сопровождающейся отщеплением группы, имеющей метку. На промежуточной стадии реакции в силу различной реакционной способности функциональных групп полимер теряет больше быстро реагирующих групп, чем медленно реагирующих. Если обозначить быстро реагирующие звенья Б, медленно реагирующие — М, а уже прореагировавшие, превращенные, звенья — X, то схематически этот процесс можно представить следующим образом  [c.40]

    В данном случае стереорегулярные полимерные модели, пригодные для исследования реакции гидролиза, удалось синтезировать косвенным путем — по реакции диазометилирования, протекающей без эффекта соседа (т. е. 0 = 1 = 2), о чем свидетельствует характер распределения звеньев в цепи образующихся сополимеров. Для большинства полимеров столь благоприятная ситуация едва ли может быть реализована. Однако есть основание полагать, что стереорегулярные полимерные модели со случайным распределением звеньев можно получать с помощью той самой реакции, которая и является объектом исследования. На первый взгляд, сама постановка задачи представляется парадоксальной реакцию, протекающую с эффектом соседних звеньев кофк1Фк2), предлага[ют использовать для синтеза моделей, образующихся именно в отсутствие эффекта соседа (йо= 1 = 2)- Но дело в том, что характер влияния соседних звеньев на реакционную способность функциональных групп полимера существенным образом зависит от условий эксперимента. [c.177]

    В процессе вулканизации образуются химические соединения вулканизующих агентов с макромолекулами, обладающие иной реакционной способностью к кислороду по сравнению с исходным эластомером. При этом изменяется также реакционная способность функциональных групп полимера. Так, образующиеся при вулканизации серные группировки увеличивают реакционную способность аллильного водорода, и этот эффект проявляется в большей степени с ростом полисульфидности поперечных связей [61]. [c.346]

    Итак, создание синтетическим путем макромолекулы с уникальной устойчивой третичной структурой в принципе возможно. Трудно, однако, сказать, какова вероятность отбора при синтезе именно каталитически активной конформации. Тем не менее (даже без закрепленной третичной структуры) полимерные модели привлекают к себе столь широкое внимание, что число работ, посвященных этим системам, исчисляется сотнями. Однако обнаруживаемое увеличение реакционной способности функциональных групп, присоединенных к полимерной цепи, в большинстве изученных систем обусловлено лишь тривиальными эффектами среды (приводящими, например, к кажущемуся сдвигу р/(а) или же локальным концентрированием субстрата на полимере [62]. Те же эффекты играют основную роль и в мицелляр-ном катализе (см. 6 этой главы). Это не удивительно, поскольку мак-ромолекулярные частицы полимерного мыла (типа ХЬУ ) по таким свойствам, как характер взаимодействия гидрофобных и гидрофильных фрагментов друг с другом и с другими компонентами раствора, подвижность отдельных звеньев, диэлектрическая проницаемость и др., близки к мицеллам поверхностно-активных веществ [64]. Рассмотрим некоторые примеры. [c.105]

    Подробно исследованы основные закономерности поликонденсации полигалогенароматических соединений с сульфидом натрия [1-7, 16, 32, 33] и обнаружены такие ее особенности, как возрастание реакционной способности функциональных групп на начальных этапах поликонденсации, возможность изменения строения элементарного звена полимера от соотношения исходных мономеров, изменение функциональности полигалогенароматических соединений за счет процессов внутримолекулярной циклизации, существенное влияние на свойства полимеров побочной реакции макроциклизации. [c.190]

    Реакционная способность атомов хлора сильно зависит от их пространственного расположения, т. е. от микротактичности полимерной цепи [87], и в существенной мере — от морфологии полимера, от доступности атомов С1 [88]. Так, атом хлора при вторичном атоме углерода может вступать в реакцию раньше третичного, если последний окажется малодоступным в результате сте-рических особенностей микро- и макроструктуры материала. Например, атомы хлора, находящиеся в аморфных областях полимера и доступные для молекул реагирующих веществ, легко вступают во все химические реакции. В кристаллических участках с плотной упаковкой цепей и сильным межмолекулярным взаимодействием эти группы малодоступны и практически не участвуют в реакциях. Во всех случаях, когда имеет место перестройка кристаллической структуры и при этом наблюдается повышение реакционной способности функциональных групп, этот факт в первую очередь связан с уненьшением размеров кристаллических областей, увеличением числа аморфных участков и разрыхлением общей структуры. [c.43]

    Изменение кинетики и ме.танизма взаимодействия реакционною центра в полимере с низкомолскулярным реагентом из-за его различного окружения в начале и в конце реакции, что вызывает изменение реакционной способности функциональных групп с конверсией -эффект соседа. Этот эффект может быть либо дальнего порядка (эффект цепи), либо ближнего порядка. [c.33]

    Различная реакционная способность функциональных групп влияет и на изменение нолиднсперсности полимера в ходе процесса поликонденсации. Так, в табл. 1 приведены данные [3] об изменении Р .1Рк Для рассматрива- емой системы. [c.50]

    Гейлорд [1] подчеркивает, что кинетика реакций полимеров определяется как реакционной способностью функциональных групп макромолекулы, так и доступностью их для низкомолекулярного реагента. С этой точки зрения он рассматривает влияние на протекание макромолекулярных реакций таких факторов, как кристалличность и ориентация цепей в полимерных реагентах, растворимость и совместимость полимеров в растворах. Действительно, как было установлено при исследовании гидролиза полиэтиленте-рефталата [5], хлорирования [6] и окисления полиэтилена [7], реакции легче протекают в аморфных участках полимеров, чем в кристаллических. Ориентация кристаллических и аморфных полимеров затрудняет доступ реагентов к функциональным группам макромолекул (в расплавах полимеров, отмечает Гейлорд, аналогичный эффект вызывается перепутанностью цепей). Степень проникновения реагентов в полимерный образец и, следовательно, скорость и глубина превращения зависят также от близости температуры реакции к температуре стеклования полимера. [c.165]

    Основные научные работы посвящены химической модификации полимеров и теории реакционной способности функциональных групп и звеньев макромолекул. Сформулировал понятие о принципиальной химически фиксированной микрогетерогенности и ее роли в системах, состоящих из привитых или блоксополимеров. Создал ряд методов химической и структурной модификации полимеров (в частности, механохимическне прививки на неорганические системы, получение поли.меров, содержащих оловоорганические группы в це- [c.397]

    Научные работы посвящены исследованию пoликoJ дeн aции и физике полимеров, показал, что в поликонденсационных процессах реакционная способность функциональных групп не зависит от длины цепи взаимодействующих молекул (принцип Флори), Исследовал (1941 — 1952) кинетику трехмерной поликонденсации и молекулярно-массовое распределение образующихся при этом полимеров. Дал математическое описание условий нахождения в таких системах точки гелеобразования. Показал, как из данных по набуханию полимеров можно получить информацию о строении макромо-лекулярных сеток и термодинамические параметры взаимодействия полимера с низкомолекулярной жидкостью. Предложил теорию растворов полимеров на основе квазикристаллической модели, что [c.522]

    Исследование реакционной способности макромолекул в П. п. опирается на принцип Ф л о р и, постулирутощий независимость реакционной способности функциональной группы от длины Ц(чи1, с которой эта группа связана. Этот принцип дает возможность количественпо описывать кинетику П, и. для образцов полимеров, состоящих из макромо. екул различной степени иолимеризации. Болое того, во миогих случаях функциональные груины в макромолекулах не отличаются ио реакциоинои сиособности от [c.438]


Смотреть страницы где упоминается термин Реакционная способность функциональных групп в полимерах: [c.487]    [c.173]    [c.150]    [c.158]    [c.159]    [c.15]    [c.156]   
Смотреть главы в:

Химические реакции полимеров Том 1 -> Реакционная способность функциональных групп в полимерах




ПОИСК





Смотрите так же термины и статьи:

Функциональные группы



© 2025 chem21.info Реклама на сайте