Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Время жизни пары электрон катион

    Время жизни пары электрон — катион при расстоянии между [c.83]

    Рассмотрим роль реакций с участием заряженных частиц. Выход свободных ионов при облучении парафинов составляет обычно (0,1 -н 0,2) 1/100 эв [103—105]. Однако время жизни даже неразделенной пары катион — электрон, как показывают расчеты [104] и анализ продуктов радиолиза в присутствии акцепторов заряда [106—108], как правило, превышает В твердых облучен- [c.168]


    В хлорированных растворителях реакция (167) преобладает над реакциями (168) и (169), что позволяет в условиях импульсного радиолиза наблюдать катион-радикалы, образующиеся, как правило, за время до 0,2 мкс и имеющие времена жизни, превышающие несколько микросекунд [445]. Поскольку спектры поглощения этих неустойчивых катион-радикалов сходны со спектрами анион-радикалов, для подтверждения предполагаемых структур были использованы специфические акцепторы активных частиц. Ни закись азота, ни кислород, которые эффективно перехватывают электроны и анион-радикалы, не влияли на интенсивность поглощения или время жизни неустойчивых продуктов радиолиза. В то же время анилин и диметиланилин, которые не реагируют с анион-радикалами в этиловом спирте [124], как было показано, уменьшают продолжительность жизни катион-радикалов. Равновесие переноса заряда [уравнение (170)], аналогичное процессам (149) и (150), наблюдалось также для ряда донорно-акцепторных пар. [c.205]

    Было установлено, что алюмокислородные тетраэдры и в регулярной структуре обладают слабо связанными электронами. При облучении УФ-, рентгеновскими и у-лучами во всех каркасных алюмосиликатах возникают дырочные центры, в которых дырка взаимодействует с двумя ядрами А1. На основании эксперимента была построена и рассчитана модель сложного центра, состоящего из двух пар тетраэдров А104+8104, в которой дырка поделена между двумя мостиковыми кислоро-дами [7, 8]. Время жизни и концентрация центров обусловлены числом и глубиной ловугаек, захватывающих выбитые облучением электроны. Число и глубина ловушек обусловлены расположением щелочных или щелочноземельных катионов. [c.100]

    В принципе перенос электрона с магнийорганического соединения на молекулу органического вещества должен привести к образованию катион-радикала магнийорганического соединения и анион-радикала второй компоненты реакции. Возникновение химической поляризации в катион — анион-радикальных парах еще недостаточно изучено. Рот [34] сообщил примеры фотохимического генерирования таких пар и показал, что в катион —анион радикальных нарах генерируется поляризация, как и в парах нейтральных радикалов, за счет б" — Го-переходов. Характер поляризации продуктов реакции такой пары определяется разностью "-факторов и наличием констант сверхтонкого взаимодействия радикалов. Фазы поляризованного спектра в этом случае можно предсказать правилами 1 и 2. Напротив, Бучаченко [6] полагает, что поляризация в катион — анион-радикальных парах должна генерироваться за счет 5 — Г 1-переходов. Продукты реакции первичной радикальной пары и продукты выхода радикалов из клетки должны в этом случае показывать в спектрах химической поляризаци ядер только эмиссию. Экспериментальные данные указывают, что за состав продуктов реакции и распределение химической поляризации в них ответственны пары о-радикалов. Возможно, что время жизни катион — анион-радикальных пар составляет 10" сек, после дего они быстро распадаются с образованием пары а-радикалов. В случае взаимодействия хлорида пгрещ-бутилмагния с перекисью бензоила возможный вклад в поляризацию от катиоп-радика-ла [(GHз)з Mg l] и аниоп-радикала перекиси бензоила был бы очень малым вследствие малых констант СТВ протонов с неспаренным электроном. Акт химической реакции перекисей с реактивами Гриньяра начинается с образования комплекса, в котором атом магния координируется с кислородом перекисной связи [69]. Возможно, что образование комплекса является необходимым условием переноса электрона. Возникающая структура с разделенными зарядами является нестабильной и распадается с образованием магниевой соли бензойной кислоты и радикальной пары. Такое течение процесса также может быть причиной отсутствия поляризации в катион — анион-радикальных парах. [c.79]


    Одновалентные катионы тина Li" , являющиеся жесткими кислотами, как и протон, могут участвовать в нейтрализации анион-радикалов. Катионы фона, способные к образованию йонных пар, также могут влиять на механизм электродных реакций. С помощью добавок доноров протонов обычно легко устано-бить, является ли промежуточно образующаяся частица анион-радикалом или дианионом. Роль среды, которая может иногда существенно влиять на протекание электродных процессов, изучена еще недостаточно. Растворитель или непосредственно участвует в электродном процессе, являясь донором или акцептором йромежуточно образующихся частиц, или оказывает влияние на кинетику переноса электрона в результате того, что расстояние Между электродом и центром реагирующей частицы в переходном состоянии также зависит от природы растворителя. Электрохи-Мики-органики постоянно прилагают усилия, чтобы найти растворитель с низкой кислотностью и электрофильностью для Восстановления и низкой основностью и нуклеофильностью для окисления. Примером может служить использование довольно редко встречающегося в электрохимической практике растворителя сульфолана, в котором скорости как гетерогенного переноса Заряда, так и гомогенных химических реакций сильно замедлены по сравнению с другими растворителями, что позволяет увеличить время жизни промежуточных анаон-радикальных частиц [111. [c.8]


Смотреть страницы где упоминается термин Время жизни пары электрон катион: [c.103]    [c.198]    [c.170]   
ЭПР Свободных радикалов в радиационной химии (1972) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Время жизни

Время жизни электронно

Электронная пара

Электронного время



© 2025 chem21.info Реклама на сайте