Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Первичное зародышеобразование

    Келлер [2], исследовавший процесс кристаллизации полиэтилена из расплава в процессе растяжения показал, что первичное зародышеобразование в этом случае осуществляется путем образования ряда центров, расположенных вдоль направления деформации. Дальнейший рост кристаллов происходит из этих центров в радиальных направлениях, аналогично тому как [c.121]

    Экспериментально было найдено, что скорости роста кристаллов полностью согласуются со вторым из этих выражений Аф. Более того, первое выражение Аф хорошо описывает скорости первичного зародышеобразования в тех случаях, когда принимаются меры для исключения первичного зародышеобразования, обусловленного присутствием в расплаве загрязняющих частиц постороннего вещества (гетерогенное зародышеобразование). Однако существуют серьезные основания полагать, что если такие предосторожности не соблюдаются, то количество первичных зародышей гетерогенного происхождения будет значительно превосходить число зародышей, образующихся в расплаве в результате гомогенных процессов. При этих условиях на температурную зависимость скорости первичного зародышеобразования будут в большой степени влиять все особенности происходящих процессов зародышеобразования. Если зародыши возникают в результате адсорбции молекул полимера на посторонних частицах, скорость их образования соответствует скорее зависимости Аф /(АТ), а не Аф АТу. Во всяком случае, ясно, что для любого из этих возможных механизмов движущая сила зародышеобразования уменьшается при более высоких температурах, но в то же время скорость, необходимая для преодоления молекулами барьера, характеризуемого значением Еп, при более низких температурах также уменьшается. В связи с этим следует ожидать, и это наблюдается в действительности, что выше или ниже определенной оптимальной температуры общая скорость кристаллизации уменьшается. [c.411]


    Несмотря на общую чувствительность скорости кристаллизации к температуре, между полимерами остаются достаточно большие различия, позволяющие свободно и с полным основанием говорить о полимерах, которые кристаллизуются быстро, и о полимерах, которые кристаллизуются медленно. Например, пленки расплавленного полиэтилена кристаллизуются, даже если их закаливать в жидком азоте, тогда как пленки полиэтилентерефталата или найлона легко закаливаются с образованием аморфного стекла. Значительные различия в этих свойствах могут быть следующим образом связаны со структурами различных рассматриваемых здесь молекул. Как мы видели, лимитирующей стадией, определяющей скорость кристаллизации полимеров, является зародышеобразование, причем более значительную роль играет в этом отношении первичное зародышеобразование. Независимо от того, имеют ли первичные зародыши гомогенное или гетерогенное происхождение, а также от того, образован ли каждый из них несколькими соседними молекулами, вытянутыми в длину, или одной многократно сложенной молекулой, их рост до критического размера требует согласованного, или кооперативного, перераспределения молекул в пределах значительного объема расплава. Молекулы вынуждены совершать поступательное и вращательное движение относительно своих соседей, и кристаллическая упаковка будет достигнута гораздо быстрее, если эти движения происходят свободно и в ограниченных пределах. Аналогичные условия необходимы также для образования поверхностных зародышей при дальнейшем росте кристалла из первичных зародышей, и в общем случае более высоким скоростям первичного зародышеобразования соответствуют более высокие скорости вторичного зародышеобразования. Для быстрой кристаллизации очень желательно, чтобы повторяющиеся химические звенья цепи не были слишком длинными и чтобы профиль молекулы отличался высокой симметрией. Низкая симметрия уменьшает число возможных положений молекулы и, кроме того, препятствует вращательному движению, необходимому для переориентации. Особенно нежелательны большие боковые группы, так как они могут служить серьезным препятствием движению одной цепи относительно другой. Наличие полярных групп может явиться дополнительным препятствием кристаллизации, особенно если они находятся далеко друг от друга (или неравномерно расположены) в цепи молекулы, и необходимы значительные перемещения, чтобы полярные группы соседних молекул заняли в кристалле соответствующие положения. Более того, в расплаве между беспорядочно расположенными молекулами могут устанавливаться локальные полярные связи, которые должны быть затем разорваны и заново образованы в кристалле между другими парами групп. [c.412]


    Первичное зародышеобразование при кристаллизации [c.15]

    Изучение кинетики кристаллизации блочных полимеров может проводиться путем наблюдения за скоростью роста индивидуальных сферолитов или путем определения скорости роста общей кристалличности. Эксперименты первого типа дают среднюю скорость движения концов фибриллов в расплаве и допускают, таким образом, прямое измерение максимальной скорости, с которой кристаллические грани данного полимера могут расти при данной температуре. С другой стороны, скорость роста общей кристалличности не является непосредственной характеристикой кинетики только какого-то одного процесса, но связана со скоростью первичного зародышеобразования, скоростью радиального роста сферолитов, а также с процессами вторичной кристаллизации, происходящими внутри сферолитов. Поэтому она является результирующей для многих одновременно идущих процессов однако роль каждого из них при тщательном анализе экспериментальных данных может быть в какой-то степени определена. Оба подхода к изучению кинетики кристаллизации блочных полимеров обсуждались в исчерпывающих обзорах Манделькерна [70, 71], поэтому здесь мы остановимся на этом очень кратко и подчеркнем лишь новые достижения. [c.457]

    Из уравнения (4) видно, что любой акт кристаллизации, приводящий к увеличению поверхности кристалла, связан с положительным изменением свободной энтальпии кристаллизации Д С. Только в тех случаях, когда мотив кристаллической решетки размещается в углу соответствующей формы между двумя уступами на поверхности кристалла, площадь поверхности не увеличивается. Однако на гладкой на молекулярном уровне поверхности кристалла новый слой молекул вырастает только после вторичного зародышеобразования - процесса, подобного первичному зародышеобразованию, но требующего преодоления меньшего барьера свободной энтальпии, так как при этом создается новая поверхность меньшей площади. Аналогичным образом третичное зародышеобразование может быть определено как начальная стадия роста нового кристаллического ряда, прилегающего к двум граням. На рис. 5.3 схематично изображены все три типа зародыш еобр азов ания. [c.22]

    Гетерогенное зародышеобразование состоит в использовании уже существующих поверхностей инородных тел для уменьшения изменения свободной энергии, необходимого для первичного зародышеобразования. Согласно классической теории зародышеобразования, рассмотренной в разд. 5.1.1, критический размер зародыша становится меньше, если происходит уменьшение свободной энергии при контакте зародыша с уже существующей поверхностью [см. уравнения (11)-(20)]. Соответственно более низкая общая свободная энергия зародьш1еобразования дС повышает его скорость. Опыты с кристал- [c.56]

    Первичное зародышеобразование при %ристаллизации 65 [c.65]


Смотреть страницы где упоминается термин Первичное зародышеобразование: [c.528]    [c.528]    [c.411]    [c.444]    [c.460]    [c.463]    [c.16]    [c.22]    [c.56]    [c.69]    [c.89]    [c.93]   
Кристаллизация каучуков и резин (1973) -- [ c.30 ]




ПОИСК





Смотрите так же термины и статьи:

Зародышеобразование первичное гомогенное

Мгновенное первичное зародышеобразование

Первичное зародышеобразование по степенному закону

Первичное зародышеобразование с постоянной скоростью

Случай первичного зародышеобразования, происходящего с постоянной скоростью или по степенному закону



© 2024 chem21.info Реклама на сайте