Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энтальпии изменение и изменение свободной энергии

    Какой вклад вносят изменения энтальпии и энтропии в полное изменение свободной энергии, происходящее при постоянной температуре  [c.85]

    Упражнение II 1.8. Определите стандартное изменение свободной энергии, энтальпии и энтропии для реакцип 2NO2 N2O4, если дано  [c.51]

    Итак, движущая сила реакции, проводимой при постоянных давлении и температуре, измеряется изменением свободной энергии продуктов по сравнению с реагентами. Если изменение свободной энергии отрицательно, реакция протекает самопроизвольно если изменение свободной энергии положительно, реакция протекает самопроизвольно в противоположном направлении если же изменение свободной энергии равно нулю, реагенты и продукты находятся в равновесии. Изменение свободной энергии складывается из двух составляющих AG = АН — TAS. Значительное уменьшение энтальпии, означающее выделение теплоты, благоприятствует протеканию реакции. Но следует учитывать и другой фактор. Значительное возрастание энтропии при образовании продуктов из реагентов также благоприятствует реакции. При обычных температурах энтропийный фактор, как правило, невелик, и поэтому AG и АН имеют одинаковые знаки. В таких случаях самопроизвольные реакции оказываются экзотермическими. Но возможны и другие варианты, когда энтальпийный и энтропийный факторы действуют в противоположных направлениях, и может случиться, что энтропийный член оказывается преобладающим. Это относится главным образом к реакциям, в которых происходит превращение твердого или жидкого вешества в газы или растворы. [c.75]


    Как известно, процесс растворения веществ друг в Друге (смешение компонентов) сопровождается изменением свободной энергии системы АР. При этом лишь в том случае, когда АР смешения отрицательна, т. е. АР = АН — ГА5 < О, имеет место самопроизвольное растворение (АН и А5 — соответственно, изменение энтропии и энтальпии системы). [c.33]

    Пользуясь данными приложения 3, вычислите изменения энтальпии, энтропии и свободной энергии испарения муравьиной кислоты, НСООН, при 298 К. Каково давление паров муравьиной кислоты при 298 К Вычислите приближенно температуру кипения НСООН и сравните свой ответ с ее истинным значением, найдя его в каком-либо химическом справочнике. Насколько велико расхождение между полученной вами и справочной величинами  [c.151]

    Вещество Состояние Изменение теплосодержания Д/ (энтальпия ДН ) Изменение свободной энерги ДР" Значение энтропии, 5  [c.449]

    Вещество Состояние Изменение теплосодержания, Д/° (энтальпия, ДЯ°) Изменение свободной энергии, Значение энтропии, [c.491]

    Для процесса диссоциации всех карбоновых кислот характерно малое, близкое к нулю, изменение энтальпии. Следовательно, изменение свободной энергии нри диссоциации обусловлено в основном большим отрицательным энтропийным членом, причем (в ккал/моль) [c.86]

    Как и при интерпретации влияния солей на водные растворы, основное внимание следует обращать на изменение свободной энергии системы при добавлении неполярных веществ к водным растворам интерпретация этого явления непосредственно с точки зрения структурной модели может оказаться ошибочной. Так, структурная модель дает приемлемое объяснение солюбилизации гидрофобных соединений под действием спиртов алкилзамещенных аминов и мочевин. Если одно растворенное вещество увеличивает структурированность раствора, можно было бы ожидать, что оно должно облегчать введение молекул другого подобного вещества. С другой стороны, структурирующая способность вещества совершенно необязательна для того, чтобы оно было в состоянии солюбилизировать гидрофобные соединения в воде. Уже отмечалось, что один из возможных механизмов денатурации белков и нуклеиновых кислот под действием мочевины заключается в стабилизации гидрофобных боковых цепей аминокислот и оснований нуклеиновых кислот при увеличении их контакта с растворителем, что проявляется в увеличении растворимости и уменьшении коэффициента активности этих групп в присутствии мочевины [31, 32, 35]. Спирты, ацетон и подобные им вещества разрушают гидрофобные связи и способствуют денатурации аналогичным образом. Однако мочевина, вероятно, не обладает структурирующим действием, по крайней мере в том смысле, как это понимается для неполярных молекул мочевина очень слабо влияет на большинство свойств воды и либо практически не изменяет структуру воды, либо, из данных по поглощению ультразвука, несколько ее разрушает [85]. Данные по энтальпии и теплоемкости растворов веществ с гидрофобными группами, а также исследования спектра ультразвуковой релаксации полиэтиленгликоля в воде и растворах мочевины указывают на то, что энергетически более благоприятное взаимодействие гидрофобных групп с мочевиной, чем с водой, связано с уменьшением структурированности воды вокруг гидрофобных групп [85, 86]. Таким образом, разрушение гидрофобных связей под действием мочевины или спирта нельзя объяснить одним и тем же механизмом с точки зрения структуры растворителя, хотя по свободной энергии эффекты соединений этих двух типов одинаковы. Возможно, что мочевина создает более благоприятное окружение для гидрофобных групп, находящихся в пустотах струк- [c.328]


    Использование квантовомеханической модели расширило детализированную теорию [см. ур. (XI.8.3) и (XI.8.За)] так,что оказалось возможным рассматривать влияние структурных изменений на внутренние частоты. В уравнении (XI.8.3) V представляет собой средневзвешенную величину внутрен них частот частицы, которая имеет конфигурацию переходного комплекса, а представляет собой константу равновесия между этим переходным состоянием и нормальными молекулами. Величины/ , и 8 являются соответственно стандартным изменением свободной энергии, энтальпии и энтропии при образовании переходного комплекса. В уравнении (XI.8.За) выражение для скорости имеет форму, удобную для статистического расчета. [c.225]

    Вещество Состояние Изменение теплосодержания л/ (энтальпия Д Н ) Изменение свободной энергии Значение энтропии 5° [c.448]

    Изменение свободной энергии можно определить, проводя реакцию в гальваническом элементе. Изменение энтальпии ДЯ рассчитывается по энтальпиям образования веществ, участвующих в реакции, или по виду или типу связей между атомами в молекулах этих веществ. [c.14]

    Чему равны стандартные изменения свободной энергии, энтальпии и энтропии для реакции [c.73]

    Вычислите изменения свободной энергии, энтальпии и энтропии для процесса испарения жидкой воды. Проверьте при помощи полученных вами результатов уравнение (16-9). Какая часть свободной энергии, энтальпийная или энтропийная, ответственна за протекание процесса испарения  [c.73]

    А0° = - 6,77 кДж, АН° = + 15,14 кДж, Д5° = + 73,4 энтр.ед ГД5° = + 21,9 кДж. Изменение энтальпии на 15,14 кДж препятствует протеканию реакции, но изменение энтропийного фактора на 21,9 кДж благоприятствует ему. Результирующая движущая сила реакции, определяемая изменением свободной энергии, составляет 6,77 кДж. [c.74]

    В большинстве случаев изменение в свободных энергиях (или в константах равновесия) связано с изменениями энтальпии. Роль энтропийного члена более заметна при высоких температурах, а также в реакциях, сопровождающихся значительным изменением строения исходных углеводородов. [c.135]

    Таким образом, измеряя величины удерживания при различных температурах опыта, можно рассчитать величину изменения энтальпии, численно равную теплоте растворения моля данного вещества в выбранной жидкости. На основании данных о коэффициентах распределения, пользуясь уравнением (VI.32), можно рассчитать величину изменения молярной свободной энергии растворения А/ °. Зная величины АЯ° и А/ °, можно определить и молярную энтропию растворения, так как [c.212]

    Для решения вопроса о том, растворяется ли данное вещество в определенном растворителе, можно провести термодинамическую оценку. При постоянных температуре и давлении решающим будет изменение свободной энергии Гиббса AG = AH— —TAS, которое учитывает как изменение энтальпии (разрыв и образование связей), так и энтропийные факторы (изменение степени упорядоченности). [c.370]

    Гидриды можно разделить на экзотермические и эндотермические Б зависимости от знака энтальпий их образования (рис. В.18). Экзотермичны реакции водорода с самыми электроположительными металлами, а также с некоторыми сильно электроотрицательными неметаллами. Если же разность электроотрицательностей невелика, реакции образования гидридов эндотермичны. Положение равновесия реакций элементов с молекулярным водородом определяется изменением свободной энергии АС . Для расчета равновесия необходимо знать изменение энтропии в этой реакции, например [c.463]

    Пользуясь данными приложения 3, вычислите изменения энтальпии, энтропии и свободной энергии при испарении ВВгз при 298 К. Какова (приближенно) температура кипения ВВгз Проверьте найденное значение температуры кипения по какому-либо химическому справочнику. Каково равновесное давление пара ВВГз при 298 К  [c.151]

    Изменение свободной энергии суммарной реакции представляет собой алгебраическую сумму изменений свободной энергии двух реакций то же самое относится к полному изменению энтальпии. Поскольку отрицательное изменение свободной энергии второй реакции превышает положительное изменение свободной энергии первой реакции, суммарная реакция имеет большое и отрицательное стандартное изменение свободной энергии. [c.191]

    Стандартное изменение свободной энергии АС" любого процесса можно вычислить по табулированным стандартным значениям свободной энергии образования ДС°бр его можно также вычислить по стандартным изменениям энтальпии и энтропии, пользуясь соотношением ДС = = АН" - TAS°. Изменение температуры приводит к изменению значения ДС, а в некоторых случаях и к изменению знака ДС. [c.193]


    Следует отметить, что солюбилизация спиртов, в отличие от углеводородов, характеризуется отрицательным изменением энтальпии. В этом случае наряду с выигрышем энтропии солюбилизации благоприятствует также энергетический фактор. Он обусловлен, по-видимому, специфическим взаимодействием полярных групп солюбилизата и ПАВ (ион-дипольное взаимодействие и образование водородных связей), что дает дополнительный выигрыш свободной энергии [23]. [c.79]

    Катализаторы не изменяют термодинамических характеристик реакций (АН — изменение энтальпии АУ — изменение внутренней энергии АС — изменение свободной энергии и т. п.), а оказывают влияние на кинетические характеристики — энергию активации /Г предэкспоненциальный множитель С из уравнения Аррениуса. [c.30]

    Такая простая форма уравнения для изменения свободной энергии при смешении характерна только для идеальных растворов. Соответствующая этому уравнению энтальпия смешения равна нулю. Действительно, на основании связи между изобарно-изотермическим потенциалом и энтальпией можно записать [c.305]

    Интерес к определению тепловых эффектов реакции несколько снизился, когда было установлено, что движущей силой химического процесса является изменение не энтальпии АН, а свободной энергии системы АО. Последняя зависит не только от теплосодержания, но и от энтропии системы Д(3 = ДЯ-ГД5. [c.29]

    Решение. Изменение свободной энергии зависит от изменения энтальпии и энтропии заданного процесса, что видно из уравнения А0 = АН—ТА8. Зная знак А5 реакций 1—5 и приняв, что реакции 1, 2, 4 и 5 экзотермические, а реакция 2 эндотермическая (что можно проверить расчетом), оценим вклад энтальпийного и энтрапийного фактора на направление процессов при стандартной температуре и температуре, отличной от стандартной  [c.51]

    Существует линейная зависимость между теплотами гидратации ионов металлов, из которых вычтены части, обусловленные стабилизацией в Поле лигандов, и потенциалами ионизации, исправленными таким образом, чтобы они относились к одному и тому же основному состоянию. Это показывает, что более простое соответствие, которого искали Ирвинг и Уилльямс, в действительности не имеет места [108, 217]. Теория поля лигандов предсказывает последовательность изменений энтальпии от хрома до цинка. В первом приближении можно предположить, что рассмотрение методом теории поля лигандов, применимое для суммарного изменения энтальпии А может быть применено также для рассмотрения изменений АЯ в отдельных последовательных стадиях, а также при отсутствии данных по энтальпиям — к изменениям свободной энергии, Константы устойчивости с введением поправок на стабилизацию в поле лигандов могут быть оценены путем линейной интерполяции между значениями для кальция, марганца и цинка. Величины стабилизации в поле лигандов представляют собой разности между экспериментальными и исправленными значениями [32, 217]. Вычисленные таким путем величины стабилизации в поле лигандов приведены в табл. 9. Стабилизации для отдельных стадий для комплексов железа, кобальта и никеля и, следовательно, суммарные стабилизации для присоединения трех этилендиаминовых лигандов постепенно возрастают, причем приближенно выполняется предсказанное соотношение 1 2 3. Спектроскопическое значение [c.52]

    Для расчета энтальпий смещения в тройных системах на основании данных для соответствующих бинарных систем впервые применен метод симплексно-решетчатого планирования эксперимента. Ддя описания поверхности отклика использовалась модель полного третьего порядка. Расчеты производились на ЭВМ. Для расчета изменений свободной энергии при образовании бинарных и тройных растворов использовали двухпараметрическое уравнение Вильсона, с помощью которого обрабатывались экспериментальные данные по равновесию жидкость — пар в бинарных системах. Поиск оптимальных значений параметров уравнения осуществлялся с помощью ЭВМ. Комплексное использование математических методов позволило получить значения свободных энергий смещения, а также эктальпийные и энтропийные характеристики для шести тройных растворов неэлектролитов. Табл. 1. Ил. 3. Библиогр 8. [c.221]

    Необходимо сначала определить, что мы подразумеваем под стабильностью иона. Строго говоря, это понятие должно быть связано с изменением свободной энергии, сопровождающим образование иона. Однако для образования карбониевых ионов из алкилгалогенидов в газовой фазе мы знаем только величины энтальпии образования карбониевых ионов, определенные по методу электронного удара, и производные от них значения энергии гетеролитической диссоциации связи. Следовательно, за неимением лучшего обычно приходится обсуждать различия в изменении свободной энергии с точки зрения различий в соответствующем изменении энтальпии. Часто этот метод бывает вполне удовлетворителен, так как соответствующие изменения энтропии обычно малы. Они не были измерены непосредственно, но их можно вычислить из соответствующих абсолютных энтропий ионизованных молекул и образующихся ионов, если сделать вполне вероятное допущение, что энтропия карбониевых ионов в газовой фазе близка к энтропии исходных углеводородов. Результаты некоторых вычислений, сделанных по этому методу, приведены в табл. 1. [c.22]

    Для оценки размеров конформационных изменений при денатурации белков наиболее удобной характеристикой является энтропия. Чем больше развернулась белковая цепь, чем резче переход порядок— беспорядок и чем ближе состояние цепи подошло к статистическому клубку, тем выше значение энтропии. В отношении этого фактора два рассматриваемых нами термодинамических состояния находятся как бы на разных полюсах. Однако в системе белок—среда возрастание конформационной энтропии при развертывании полипептидной цепи в значительной степени компенсируется ее отрицательным изменением вследствие погружения неполярных атомных групп в воду (эффект гидрофобных взаимодействий). Среднее изменение конформационной энтропии в расчете на один остаток при переходе из нативного состояния в денатурированное колеблется от 2 до 6 ккал/(моль град) [28—30]. По существу, эта величина составляет энтропийную стабилизацию развернутого состояния. Устойчивость компактной глобулы характеризует энтальпия. По данным С. Чотиа [12], среднее значение изменения энтальпии на один остаток при том же переходе составляет 2,5—3,0 ккал/моль. Для нативной конформации лизоцима была получена общая энергия стабилизации 28—36 ккал/моль, причем наиболее существенный вклад (около половины) вносят гидрофобные взаимодействия. Разность свободной энергии между нативным состоянием и денатурированным, или общая стабильность функционирующего в физиологических условиях белка, составляет, согласно К. Тэнфорду [31], К. Пейсу [32] и П.Л. Привалову [33], от 4,0 до 15,0 ккал/моль. Это есть малая разность больших чисел. [c.347]

    Вещество Состояние Изменение теплосодержания д/ (энтальпия, ДН ) Изменение свободной энергии Д/ Значенве энтропии S  [c.446]

    Обнаруживаемые изменения структуры воды в граничных слоях не только сказываются на ее физических свойствах, но и вызывают изменение расклинивающего давления в тонкой прослойке [42, 43]. Этот эффект возникает при перекрытии граничных слоев с измененной структурой в достаточно тонких прослойках. Структурные изменения прослойки, происходящие при перекрытии, ведут к изменению ее свободной энергии Fs, которая становится функцией толщины прослойки /г. Термодинамическим следствием этого является появление структурной составляющей расклинивающего давления П5 = — др1/ дк)т, величина и знак которой зависят от характера происходящей при перекрытии структурной перестройки. Так как AFs = AHs—TASs (где ДЯ — изменение энергии межмолекулярных связей, а Д5 — изменение энтропии в прослойке при изменениях взаимной ориентации молекул, характеризуемой параметром порядка), знак производной дР /дк зависит от изменений энтропии и энтальпии прослойки воды при изменении ее толщины. [c.15]

    Вычислите изменения свободной энергии, энтальпии и энтропии для реакции NH4 1 (тв.) -> N114 (водн.) + С1 (водн.) [c.74]

    Напомним, что, согласно изложенному в разд. 18.5, изменение свободной энергии АС какого-либо процесса связано с изменениями энтальпии и энтропии, сопровождающими этот процесс, соогношением АС = ДЯ - А5 [c.441]

    Для развития теории влияния ПАОВ на стадию разряда — ионизации электрохимических реакций большое значение имеют данные, полученные при различных температурах, поскольку из них можно рассчитать соответствующие изменения теплоты, свободной энергии и энтропии активации, вызванные адсорбцией ПАОВ. Для корректной трактовки кинетических данных необходимы параллельные исследования по влиянию температуры на адсорбцию ПАОВ. Наиболее полные данные по влиянию температуры на адсорбцию ПАОВ и ингибирование ими реакций восстановления катионов С<12+, РЬ +, 2п +, Еи + на ртутном и амальгамных электродах были получены Ф. И. Даниловым и С. А. Па-насенко. Ими показано, что энтальпия адсорбции АЯа не зависит от степени заполнения поверхности ПАОВ, тогда как свободная энергия адсорбции АОд линейно изменяется с ростом 0. Следовательно, рост абсолютной величины АСа происходит за счет увеличения энтропии адсорбции Д5а- [c.170]

    Определение термодинамических величин широко используется в физической химии. С помощью потенциометрии определяются изменения величины свободной энергии, энтропии, энтальпии при химических процессах, определяются активности (концентрации) в водных и нeвoдн x растворах и расплавах. [c.8]

    Рассчитаем, возможно ли самопроизвольное протекание реакции восстановления Рез04 оксидом углерода (И), приведенной а предыдущих параграфах, если все вещества взяты в стандартных состояниях ири стандартной температуре. В 2 вычислена энтальпия этой реакции ДЯ°29а =—15 кДж/моль РезО , а в 4 — энтропия Д5 298 = —6,3 Дж/К-моль Рез04. Следовательно, изменение свободной энергии [c.175]

    Как показано в предыдущем параграфе, направление самопроизвольного процесса, в том числе химической реакции, зависит от знака изменения свободной энергии, который определяется величинами изменений энтальпии и эптропии и температурой. [c.176]

    На самом деле уравнение (8.4) относится лишь к так называемым идеальным растворам, для которых все свойства предполагаются зависимыми только от концентрации, безотносительно к тому, что является вторым компонентом раствора Идеальным раствором нaзывaef я раствор, для которого АЯобр(раствор) =0, так что все изменение свободной энергии связано с изменением лишь энтропии, которая в этом случае может только возрастать (А5обр(раствор) >0). В реальных растворах энтальпия растворения в подавляющем большинстве случаев не равна нулю, следовательно, уравнение (8.4) нуждается в уточнении. [c.177]


Смотреть страницы где упоминается термин Энтальпии изменение и изменение свободной энергии: [c.48]    [c.124]    [c.69]    [c.327]    [c.92]    [c.349]    [c.349]   
Современная химия координационных соединений (1963) -- [ c.40 , c.42 , c.52 , c.62 , c.64 ]




ПОИСК





Смотрите так же термины и статьи:

Изменение свободной энергии

Свободная энергия

Энергия, Энтальпия

Энтальпия свободная



© 2025 chem21.info Реклама на сайте