Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо н его аналоги

    При восстановлении нитросоединений в амины железом и соляной кислотой, т. е. в кислой среде, протекает побочная реакция образования кетонов (см. стр. 275). Возможно, как это происходит при окислении перекисью водорода, что степень интенсивности такого побочного процесса зависит от положения нитрогруппы в молекуле. Вполне логично считать, что в одних и тех же условиях восстановление 2-нитропентана железом и соляной кислотой дает меньше амина и больше кетона, чем восстановление 3-нитропентана. Поэтому в смеси двух аминов 3-аминопентана должно было бы находиться больше, чем это получается по анализу. То, что первичный н-нитропентан определяется в продуктах нитрования в большем количестве, чем это следует ожидать на основании аналогии в закономерностях нитрования и хлорирования, объясняется, очевидно, тем, что при высоких температурах нитрования он термически более устойчив, чем остальные изомеры, и продукты нитрования, таким образом, им обогащаются. [c.569]


    Соединения Ре (0), Ru (0), Os (0). Подобно элементам подгруппы марганца и хрома, железо и его аналоги способны образовывать соединения за счет только донорно-акцепторного взаимодействия. Так, нагреванием порошка железа в струе СО при температуре 150—200° С и давлении около 1-10 — 2- 10 Па образуется пентакарбонил железа Fe( O)5  [c.584]

    По сравнению с элементами подгруппы железа и кобальта и его аналогов происходит дальнейшее спаривание (п—1)й-электронов стабилизация (п—1)й-подслоя. Поэтому высшая степень окисления кобальта и его аналогов оказывается ниже, чем у рутения и ос- ия. Для кобальта наиболее типичны степени окисления - -2 и +3, а для иридия степени окисления +3 и +4 примерно равноценны. Получены также соединения родия (VI) и иридия (VI). Для элементов подгруппы устойчивы координационные числа 6 и 4 (табл. 52). [c.594]

    Если оформление стадии крекинга достаточно однотипно, то варианты использования закоксованного железоокисного катализатора после отделения от продуктов реакции существенно различаются в зависимости от назначения процесса и типа катализатора. В случае применения железной руды возможно получение восстановленного железа за счет отложившегося кокса в специальной вращающейся печи [3.11] или в псевдоожиженном слое в среде восстанавливающего агента [3.12]. Однако отсутствие рециркуляции катализатора потребует специального подогрева свежего катализатора до высоких температур [3.11]. Более рациональным является подогрев части или всего катализатора за счет выжигания отложившегося кокса в регенераторе по аналогии с процессом каталитического крекинга [3.7, 3.10]. [c.61]

    Для реакции крекинга бензола, по Краснокутскому и Немцову (72), величина энергии активации равна 72 ООО кал/моль (на железо). Для дифенила величина энергии активации не могла быть вычислена за недостатком данных. По аналогии с нафталином, впредь до получения новых экспериментальных данных, мы условно принимаем ее равной 90 ООО кал/моль. Антрацен, как это видно будет в дальнейшем, стоит особняком среди изученных углеводородов. Поэтому в настоящее время трудно даже ориентировочно предсказать величину энергии активации реакции крекинга указанного углеводорода, не рискуя впасть в большую ошибку. Можно только полагать, что величина энергии активации реакции крекинга антрацена значительно ниже, чем для остальных ароматических углеводородов. [c.185]

    Учеными республики предложены различные способы регенерации, наибольший интерес с практической точки зрения представляет окисление меркаптанов до дисульфидов кислородом воздуха в присутствии катализаторов-переносчиков кислорода. В качестве катализатора обычно применяют щелочные растворы фталоцианиновых комплексов, прежде всего кобальта и железа. В настоящее время в Институте нефтехимии и катализа АН РБ и УНЦ РАН организовано опытно-промышленное производство полифталоцианинов кобальта [29, 30, 32]. Процесс очистки топлив и газов в его присутствии по технико-экономическим показателям не уступает, а по некоторым превосходит зарубежные аналоги. [c.237]


    Сера непосредственно соединяется со многими элементами. Если элемент имеет меньшую электроотрицательность, чем сера, происходит образование сульфидов, содержащих ион S . Например, сульфид железа(П) FeS образуется при непосредственном взаимодействии железа и серы. Многие металлические элементы встречаются в природе в виде сульфидных руд, например PbS (галенит, или свинцовый блеск) и HgS (киноварь). Существуют также руды, родственные сульфидным, которые содержат ион Sj (аналог пероксид-иона) и называются пиратами. Пирит железа FeS, образует золотисто-желтые кубические кристаллы. Поскольку в старину золотоискатели иногда по ошибке принимали пирит железа за золото, он получил название золотая обманка . [c.312]

    При образовании некоторых, сульфидов и их аналогов (например, щелочных и щелочноземельных металлов, магния, цинка) выделяется много теплоты, реакция протекает очень бурно, и ампула, особенно стеклянная, разрушается. Поэтому металл следует брать не в виде тонкого порошка, а в виде стружки, мелких гранул или крупки. Щелочные и щелочноземельные металлы и некоторые другие разрушают стекло и загрязняют продукты реакции соединениями кремния. Поэтому их сульфиды получать таким способом нельзя. Этим методом можно получать сульфиды, селениды элементов подгруппы железа, хрома, ванадия, титана, галлия, а также меди, серебра, марганца. В тех случаях, когда вещество пе плавится, обычно после 1—2-часового нагревания прп температуре, рекомендованной в прописях, оно будет неоднородно по составу. Рекомендуется ампулу разбить, вещество растереть в ступке, снова поместить в ампулу, запаять ее, а затем назревать в течение 2—3 ч (можно еще раз не нагревать, но тогда процесс должен длиться 10—15 ч). [c.47]

    Осмий — аналог железа — может проявлять максимальную валентность, равную восьми  [c.46]

    Применение цинка и его аналогов разнообразно. Большая часть цинка используется для оцинкования железа в целях предохранения последнего от коррозии (анодное покрытие), а также для получения различных сплавов (например, латуней, нейзильберов и др.). Цинк применяют в некоторых гальванических элементах. [c.309]

    В таблице рутений находится в поле -элементов, в подгруппе железо— рутений—осмий. Электронная конфигурация его 4й 5з , а потому максимальная валентность 8. Можно было бы ожидать следующие низшие валентности по аналогии с железом 2, 3, 6. Но это не совсем соответствует действительности кроме соединений с валентностью 2, 3, 6, известны соединения с валентностью 4 и 5, что, впрочем, не противоречит строению электронной оболочки его атома. Отрицательных ионов и полиатомных молекул рутений не образует. Средняя атомная масса должна быть близкой к среднему арифметическому между атомными массами железа (55,847) и осмия (190,2), т. е. 123,02. Наблюдаемая средняя атомная масса рутения 101,07. [c.103]

    К восьмой группе элементов периодической системы относятся три триады железа, рутения и осмия. Номер группы обычно отвечает максимальной валентности элементов по кислороду. На этом базировались попытки К. Горалевича (1929—1932 гг.) получить восьмивалентные соединения железа, никеля и кобальта. Как известно, эти попытки окончились неудачно. Позже Б. Ф. Ормонт, исходя из современных представлений о нормальной и возбужденной валентности, показал, что для этих элементов невозможно достичь валентности, равной восьми. Из девяти элементов этой группы только два элемента рутений и осмий проявляют эту высокую валентность. Поэтому в ряде вариантов периодической системы в последнее время номер 8В над этой группой не ставят. Все рассматриваемые элементы относятся к а -типу, но электронные структуры оболочек атомов железа, кобальта и никеля различны. Если с точки зрения строения атома аналогия -элементов в каждой подгруппе определяется суммарным числом внешних 5- и -электронов слоя, соседнего с внешним, то истинными аналогами следует считать подгруппы элементов, расположенные по вертикали. Таким образом, в 8В-гру-ппе элементов три подгруппы железо-рутений—осмий кобальт—родий—иридий и никель—палладий—платина. Свойства этих элементов и их соединений и будут нами рассматриваться по данным подгруппам. [c.345]

    Периоды тем длиннее, чем ниже расположены в таблице. Этим объясняется тот факт, что внутри больших периодов соседние элементы ближе друг к другу по химическим и физическим свойствам, чем в верхних периодах. Так, в малых периодах по мере перехода от одного элемента к другому наблюдаются значительные скачки в свойствах. В нижних же периодах переход от металлических свойств к неметаллическим происходит медленнее, а в триадах элементов, составляющих побочную подгруппу Vni группы (например, семейство железа Fe —Со —Ni), наблюдается горизонтальная аналогия. [c.39]

    Известны и аналоги ферроцена, содержащие вместо железа кобальт или никель. Соединения этого типа привлекают особое внимание из-за необычного характера имеющихся в них химических связей. [c.351]


    Работа 40 ЖЕЛЕЗО И ЕГО АНАЛОГИ [c.321]

    Переход электронов с одного уровня на другой становится тем более вероятным, чем дальше от ядра расположены валентные электроны и чем энергетически ближе к основному состояния оказываются незанятые уровни. Этим объясняется ковалентность 6 у серы (ЗРв), 7 — у иода (1 ), 8 — у осмия (ОзРв) и отсутствие такой высокой ковалентности у кислорода, фтора, железа, аналогов серы, иода и осмия, расположенных в периодической системе элементов выше. Необходимость больших энергетических затрат на возбуждение атомов гелия, неона и аргона и невозможность их компенсации объясняют инертность этих элементов, хотя для их аналогов — криптона, ксенона и радона — получены соединения с ковалентностью 2, 4, 6 и 8 (1<гр2, Кгр4, Хер2, Хер4, ХеРе, ХеРа и др.). [c.112]

    Химия этих элементов лишь в небольшой степени напоминает химию железа аналогия с железом наблюдается только в некоторых соединениях, существующих в твердо.ч состоянии, таких, как сульфиды илн фосфиды, а также в комплексах с лигандами л-типа, таких, как СО или Л-С5Н5. Рутений и ослшй значительно легче, чем железо, переходят в высшие состояния окисления (VI и VIII) в химии этих элементов очень важное место занимают четырехокиси АЮ, , а также оксогалогениды и оксо-анионы. По химическим свойствам оба элемента очень близки к рению особенно это относится к [c.424]

    Он обладает антиспазмотическим действием атропина, но, в отличие от последнего, почти лишен мидриатического действия ( /юоо активности атропина) и не влияет на секрецию желез. Аналог синтропана с четвертичным атомом азота обладает половиной активности атропина. [c.174]

    Персульфид водорода HgS — аналог пероксида водорода. Персульфиды встречаются ь природе. Например, широко распространенный минерал пирит FeSj представляет собой персульфид железа (П) [c.327]

    Получены также карбонилы железа и его аналогов более сложного состава. Так, при облучении Ре(СО)б ультрафиолетовым светом выделяется СО и образуются темно-желтые кристаллы эннеакарбонила Ре2(С0)я (т. пл. 100°С). Это д 1ухъядерное соединение кластерного типа. В нем атомы железа связаны непосредственно, так и через СО-мостики  [c.585]

    Ядро Со за счет электронного захвата переходит в ядро Ее (Т, 2 для ядра " Ее составляет 0,1 мкс), при этом заселяется возбужденное состояние ядер железа. Для того чтобы исследовать энергетические уровни ядер Ре, образующихся при распаде ядер источника, испущенные 7-лучи могут поглощаться стандартным поглотителем, настроенным на одну энергию. В качестве источника готовится и используется кобальтовый-57 аналог исследуемого соединения. Из этого эксперимента получают [15] информацию о короткоживуших ком- [c.295]

    Соли Ре + во мнбгом похожи на соли Mg +, что обусловлено близостью радиусов ионов (у Nig + г, = 66 пм, у Ре + п — 74 пм] , Это сходство относится к свойствам, определяемым, в основном, межионными и ион-дипольными взаимодействиями (кристаллическая структура, энергия решетки, энтропия, растворимость в воде, состав и структура кристаллогидратов, способность к комплексообразованию с лигандами, обладающими слабым полем). Наоборот, не проявляется аналогия в свойствах, связанных с электронными взаимодействиями (способность к реакциям окисления-восстановления, образование комплексов со значительной долей "ковалентной связи). На рис. 3.127 сопоставлены энтропии кристаллических соединений Ре + и М +. При сравнении рис. 3.127 и 3.125 прослеживается степень сходства и различия двухвалентных состояний элементов семейства железа между собой и между Ре и Мд, принадлежащим к разным группам периодической системы элементов. [c.562]

    Железо, кобальт и никель занимают в четвертом периоде системы элементов особое место. Эти элементы не имеют элементов-аналогов в малых периодах системы Д. И. Менделеева, а вместе со своими аналогами в пятом (рутений, родий н палладий) и шестом (осмий, иридий н платима) периодах располагаются в середине больших периодов, составляя УП1В-подгруппу. Элементы четвертого периода — железо, кобальт, никель — отличаются от элементов пятого и шестого периодов тем, что в их атомах нет свободного /-подуровня. В связи с этим, несмотря на ряд общих свойств, в химическом отношении железо, кобальт и никель отличаются от остальных элементов /П1В-подгруппы (платиновых металлов). [c.297]

    Названием благородные металлы объединяются элементы пятого и шестого периодов, являюп иеся аналогами элементов семейства железа — меди. К благородным металлам, таким образом, относятся в пятом периоде рутений, родий, палладий и серебро, а в шестом— осмий, ирилий, платина и золото. Эти элементы, за исключением серебра и золота, называют также платиновыми металлами или платиноидами. [c.324]

    Минерал пирит FeS2 является персульфидом, поскольку содержит группировку [S2], играющую роль аниона (Fe "[82] ). Атомы серы в персульфид-ионе свя.заны ме ду собой ковалентной связью. В кристалле пирита, который до некоторой степени можно рассматривать как аналог кристалла поваренной соли Na l, атомы железа занимают по-зи1(ии натрия, а позиции хлора заняты гантелью из атомов серы. [c.115]

    Предложена модель, описывающая продукты термического синтеза фуллерена с ацетилацетонатом железа, по аналогии с хорошо изученными в физике твердого тела сплавами металлов с металлоидами, а также металлополимерами, магнитные и резонансные характеристики которых имеют сходство с полученными материалами. Мы установили, что при повышении температуры резонансное поле увеличивается, а ширина линии МР уменьшается, что позволяет воспользоваться теорией независимых зерен Шлемана для анализа данных МР и определения величины магнитной анизотропии, ее зависимости от состава исходной смеси уменьшение при снижении количества железа. Привлекая теорию Сликтера, мы провели оценку размера полученных частиц магнитной фазы и установили аналогичную закономерность. [c.163]

    Для 5-элементов наиболее типичны простые вещества, имеющие кристаллы со структурой объемноцентрированного куба. Элел енты подгрупп скандия, титана, марганца, цинка и аналоги железа существуют в виде металлов с гексагональной решеткой простые вещества элементов подгрупп ванадия и хрома — в виде кристаллов с кубической объемноцентрированной решеткой, а простые вещества элементов подгрупп кобальта, никеля и меди — в виде металлов с решеткой гра-нецентрированного куба. Большинство 4/-элементов (лантаноидов) чаще всего образуют металлы с гексагональной структурой. [c.256]

    У. Укаяште реагентн. с помощью которых можно отличить ванилин от его гидрированного по циклу аналога. а. Бисульфит натрия б. Хлорид железа (Ш) в. ней 1 г. А ( Нз)зОН [c.127]

    Строение многих полученных за последние десятилетия соединений трудно описать методом локализованных пар. Примером таких веществ служат ферроцен Ре (С Н.,),. дибензохром (СвНв)2Сг и группа их аналогов. Ферроцен (пентадиенил железа) можно получить по реакции (в среде диэтилового эфира) [c.112]

    НОЙ теории катализа, а поэтому и критерия подбора гетерогенных катализаторов, еще не разрабога-но. Все же в представлениях о механизме катализа достигнуты большие успехи, позволивщие выдвинуть некоторые общие принципы выбора катализаторов для различных типов реакций. Так, во многих случаях определяющим фактором в подборе катализаторов является положение элементов в периодической системе Д. И. Менделеева. На рис. 2.17 представлены результаты изучения относительной каталитической активности металлов четвертого - шестого периодов в реакции разложения аммиака. Представленный график показывает периодичность изменения каталитических свойств с максимумами активности у железа и его аналогов у рутения и осмия. [c.243]

    Подгруппы таблицы Менделеева разделены, вследствие чего получается 18 вертикальных столбцов, называемых семействами, отражающими, как будет видно, последовательное заполнение 5-, р- и -орбиталей с 2, 6 и 10 электронами соответственно. Элементы каждого столбца являются истинными аналогами. Группа VIII, содержащая триаду железа и платиновые металлы, помещена в центре таблицы и отделяет семь подгрупп А от семи подгрупп Б. Инертные газы помещены справа на конце таблицы, отражая за- [c.89]

    При растворении ферроцена в серной или азотной кислоте образуются окрашенные в синий цвет растворы, содержащие 17-электронный катион феррициння [л-С5Нб)2ре]+ с железом в степени окисления +3. Получены многочисленные аналоги ферроцена, содержащие замещенные ионы Ср заместители могут быть введены либо в свободный лиганд до синтеза ферроцена, либо непосредственно в ферроцен. Характерна, например, такая цепочка превращений  [c.113]

    Молекулярные орбитали ферроцена строятся как линейные ком- бинации Зс/-, 4s- и 4/7-АО железа и десяти тг-орбиталей колец (по 5 от каждого кольца). Всего возникает 19 МО, среди них связывающие, несвязывающие и разрыхляющие. Сильно связывающими орбиталями являются Oig, а ,,, и На них размещаются 12 электронов. За этой замкнутой оболочкой следук5т несвязывающие орбитали a[g, ig и Электронные конфигурации МО аналогов ферроцена ( ценовых комплексов переходных металлов) имеют вид в согласии с их магнитными свойствами  [c.252]

    Химические свойства соединений элементов VIII группы периодической системы в целом изменяются при переходе от легких к тяжелым аналогам, подчиняясь тем же закономерностям, что и свойства соединений переходных элементов других групп. Так, при перемещении по группе сверху вниз возрастает устойчивость соединений, содержащих элемент в высшей степени окисления (см. табл. 1.15). Действи-лельно, если даже для железа наиболее характерной степенью окисления является +2 и +3 ( шести - и особенно восьмивалентное железо неустойчиво), то для осмия вполне стабильны соединения с наиболее высокой для элементов периодической системы степенью окисления -Ь8. Такая же закономерность наблюдается при переходе от Со и Ni к их тяжелым аналогам. Например, для Ni наиболее устойчивы соеди- [c.111]

    Химические свойства. Железо является металлом со средней восстановительной активностью. При окислении его слабыми окислителями получаются производные двухвалентного железа сильные окислители переводят его в трехвалентное состояние. Эти два валентных состояния являются наиболее устойчивыми, хотя известны соединения железа с валентностью 1, 4 и 6. Являясь аналогом рутения и осмия (аналогия по подгруппе), железо имеет также много сходного с кобальтом и никелем (аналогия по периоду). При определенных условиях оно вступает в реакции почти со всеми неметаллами. При невысоких температурах (до 200° С) железо в атмосфере сухого воздуха покрывается тончайшей оксидной пленкой, предохраняющей металл от дальнейшего окисления. При высокой температуре оно сгорает в атмосфере кислорода с образованием Fe Oi. Во влажном воздухе и кислороде окисление идет с получением ржавчины 2Fe20a HgO. Галогены активно окисляют железо с образованием галидов FeHlgj или FeHlgg (иодид железа (III) не образуется). При нагревании железо соединяется с серой и селеном, образуя сульфиды и селениды. В реакциях с азотом и фосфором получаются нитриды и фосфиды в случае малых концентраций азота образуются твердые растворы внедрения. Нагревание с достаточным количеством [c.348]

    Ферроцен имеет свойства ароматического соединения устойчив к действию кислот, вступает в реакцию сульфирования, ацилп-руется по Фриделю — Крафтсу. В изучение ферроцена и его производных болыиой вклад внесен А. Н. Несмеяновым и его учениками. Известны и аналоги ферроцена, содержащие вместо железа кобальт или никель. Соединения этого типа привлекают внимание в связи с необычным характером химических связей, имеющихся в их молекулах. [c.253]


Смотреть страницы где упоминается термин Железо н его аналоги: [c.91]    [c.435]    [c.227]    [c.96]    [c.536]    [c.49]    [c.133]    [c.321]   
Смотреть главы в:

Практикум по общей химии -> Железо н его аналоги




ПОИСК







© 2024 chem21.info Реклама на сайте