Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вода тяжелая Водород тяжелым

Рис. 6.7.1. Схема универсального модуля для очистки дейтерийсодержащей воды от трития. Р — исходная вода, содержащая дейтерий и тритий Т — тритиевый концентрат В — кондиционная тяжёлая вода Р — протиевая вода 1, 2 — колонны каталитического изотопного обмена, 3, 4 — электролизёры, выполняющие функции нижних УОП, 5, 6 — верхние УОП, в качестве которых используются пламенные горелки или каталитическое окисление водорода кислородом Рис. 6.7.1. <a href="/info/95596">Схема универсального</a> модуля для очистки дейтерийсодержащей воды от трития. Р — <a href="/info/1287997">исходная вода</a>, содержащая дейтерий и тритий Т — тритиевый концентрат В — кондиционная тяжёлая вода Р — протиевая вода 1, 2 — <a href="/info/69208">колонны каталитического</a> изотопного обмена, 3, 4 — электролизёры, выполняющие <a href="/info/1449706">функции нижних</a> УОП, 5, 6 — верхние УОП, в качестве <a href="/info/1768031">которых используются</a> <a href="/info/379390">пламенные горелки</a> или <a href="/info/1015345">каталитическое окисление водорода</a> кислородом

    Тяжёлую воду и тяжёлый изотоп водорода выделяют из природных соединений, главным образом из воды. Содержание дейтерия (В) в природных соединениях составляет примерно 0,015% ат., при этом отклонение в величине концентрации обычно составляет не более 0,001% ат. [1], а трития (Т) на Земле всего несколько килограммов. Для концентрирования дейтерия и трития используют различия в физико-химических свойствах изотопов и их соединений, обусловленные разными массами атомных ядер. Наибольшее применение получили следующие методы [19]  [c.278]

    Тяжёлая вода. Тяжёлой водой называется вода, в состав молекулы которой в.ходят один или два атома тяжёлого изотопа водорода (дейтерия) с атомным весом 2, обозначаемого О или Н . Таким образом, состав тяжёлой воды выражается формулами НПО или ОгО (другие обозначения Н Н О и соответственно Н О). По своим физико-химическим свойствам тяжёлая вода заметно отличается от обычной воды (см. ниже). [c.185]

    НОСТИ, техника термостатирования, позволяющая поддерживать и измерять температуру с точностью (0,0005- 0,001) градуса. Кроме того следует учитывать, что в молекуле воды может быть изменённым по сравнению с природным изотопный состав и другого изотопа — кислорода (природная вода содержит 0,207 ат.% и 0,0374 ат.% 0). При этом, различие в плотностях природной воды и Н2 0 близко к аналогичной величине для тяжёлой воды (для Н2 0 плотность при 25 °С равна 1,109 378). Поэтому для обеспечения нужной точности анализа разработаны соответствующие методики стандартизации изотопного состава воды по кислороду или водороду. Безусловно, накопленный при развитии денсиметрических методов анализа опыт оказался чрезвычайно полезным в смежных областях науки и техники и широко используется для точного измерения плотностей других жидкостей. [c.124]

    ТЯЖЁЛАЯ ВОДА — вода, в к-рой водород замещен его тяжелым изотопом — дейтерием (ВаО). Выделена из природной воды Г. Льюисом, Р, Макдональдом (США, 1933) и А. И. Бродским (СССР, 1934). В природной воде, состоящей в осн. из легкой НгО, Т. в. почти полностью содержится в виде молекул ПВО, и ее изотопные разнов1вдности находятся в равновесии НзО ОаО 2НВ0 (соотношение О Н близко к 1 6800), Свойства Т. в. заметно отличаются от св-в легкой воды т-ра замерзания 3,82° С т-ра кипения 101,42 С плотность (т-ра 20° С) 1,1059 г/см т-ра максимальной плотности 11,6° С. Скорости испарения тяжелой и легкой воды относятся, как 0,6 1 растворимость солей в тяжелой воде меньше, чем в легкой реакции в тяжелой воде протекают [c.600]


    Электрохимический метод получения тяжёлой воды и изотопов водорода 277 [c.277]

    Современное состояние проблемы применения электролиза для производства тяжёлой воды и изотопов водорода. Впервые промышленное производство тяжёлой воды по электролизному методу было организовано в Рьюкане (Норвегия). Первоначальная установка состояла из девяти последовательно соединённых ступеней электролитического концентрирования, получаемый продукт содержал 15 ат.% дейтерия, относительный отбор на ступенях составлял 0,27 обогащённый водород не сжигали и не возвращали в цикл. Для увеличения объёма производства впоследствии была использована рекуперация газов, затем её заменили процессом изотопного обмена между парами воды и водородом. До 1943 г. установка в Рьюкане была крупнейшим производителем тяжёлой воды в мире. Окончательное концентрирование примерно от 15 до 99% ат. О проводилось по 9-ступенчатой электролитической схеме с рекуперацией газов. [c.287]

    Ректификация жидкого водорода при температуре 20-23 К была использована для производства тяжёлой воды в ряде стран (Россия, Индия, ФРГ, Франция) [3, 4]. Важным подготовительным этапом процесса разделения этим методом является глубокая очистка водорода от примесных газов. Так например, остаточное содержание кислорода в водороде не должно превышать одной миллиардной объёмной доли. Недостаточная очистка от кислорода приводит к взрывам на установке ректификации, обусловленным накоплением кислорода и образованием взрывоопасной кислород-водородной смеси. [c.272]

    Введение. Потребность в тяжёлой воде [13, 14] и изотопах водорода впервые возникла с созданием ядерного реактора, в котором тяжёлая вода [c.277]

    На этом принципе и построены ядерные реакторы, в которых уран определённым образом размещается в замедляющей среде. Наилучшим замедлителем нейтронов мог бы служить водород. Поскольку массы протонов и нейтронов почти одинаковы, нейтрон может потерять при столкновении с протоном практически всю свою кинетическую энергию, передав её протону. Однако протоны довольно эффективно захватывают медленные нейтроны с образованием ядер дейтерия (Н1- -/г1-)- (-1-Н ). Поэтому в качестве замедлителей в реакторе обычно используются углерод (графит) или дейтерий (в виде тяжёлой воды В.зО). [c.61]

    В настоящее время электрохимический метод разделения изотопов водорода не является основным промышленным методом получения тяжёлой воды, тем не менее, есть ряд успехов в этой области, которые в будущем могут сделать его одним из конкурентоспособных. [c.279]

    Область применения изотопов водорода, производимых электролизным методом. Тяжёлая вода представляет, как уже говорилось выше, огромный интерес для ряда областей физической химии, физики и техники. Кроме ядерной энергетики дейтерий используется для производства термоядерного оружия (в водородной бомбе основным компонентом является дейтерид лития — ЫО). В наши дни, несмотря на частичное разоружение, проблемы получения дешёвого дейтерия и эффективного концентрирования изотопов не теряют своей остроты, поскольку в перспективе основным источником энергии будут управляемые термоядерные реакции. [c.288]

    Детектор SNO (см. рис. 10.3.6) расположен в шахте на глубине 2092 м. Он использует 1000 тонн тяжёлой воды D2O, в молекуле которой вместо обычного водорода присутствует дейтерий D — тяжёлый изотоп водорода (D = [c.19]

    Изотоп водорода (дейтерий). Дейтерий в реакторостроении используется, в основном, в виде тяжёлой воды ОгО. Его концентрация в природной изотопной смеси водорода составляет 0,015%. К началу 90-х годов общемировое производство тяжёлой воды достигло уровня 5000 т/год. Основной объём его сконцентрирован в Канаде, где выпускается 4000 т/год ВгО на блоках единичной мощности от 400 до 800 т ВгО/год. Основным методом производства ВгО является самый прогрессивный ныне, низкий по себестоимости продукта, процесс двухтемпературного изотопного обмена а системе сероводород-вода [29]. Значительные объёмы тяжёлой воды производятся в Индии ( 300 т ОгО/год) и США ( 200 т ОгО/год). В СССР значительные объёмы дейтерия производились методом криогенной ректификации водорода [88]. [c.210]

    Глубинные массивные кристаллические периодитовьге породы, как и метиориты, содержат элементарный >тлерод и карбиды тяжёлых металлов. Эти же породы содержат воду, водород, окись углерода и углекислоту. В этой связи в наше время выдвинут целый ряд других гипотез о неорганическом происхождении нефти и газа в недрах Земли в результате химических реакций непосредственно из углерода и водорода в условиях высоких температур, давлений и каталитического действия оксидов металлов (Fe, Ni и др.) (H.A. Кудрявцев, В.Б. Порфильев и др.). [c.7]

    При электролизе воды водород и кислород практически всегда получаются влажными. Концентрация дейтерия во влажных газах, отводимых от электролизёра, всегда выше, чем в сухих, так как концентрация тяжёлого изотопа водорода в парах воды, насыщающих газы, близка к концентрации дейтерия в электролите. В зависимости от содержания паров воды в газах, отходящих из электролизёра, величина эффективного коэффициента разделения изотопов водорода скэф снижается по сравнению с его величиной, получаемой из выражения (6.10.13). [c.282]


    Тяжёлая вода, характеризуясь высокой теплоёмкостью, являясь апро-тонным растворителем, обладает также низким сечением захвата тепловых нейтронов дейтерием а = 0,0015 барн), которое в 200 раз меньше, чем для лёгкого изотопа водорода — протия а = 0,3 барн). Тяжёлая вода по замедляющей способности в отношении нейтронов в 3-4 раза эффективнее графита. Отмеченные обстоятельства обеспечивают использование тяжёлой воды в качестве теплоносителя и замедлителя нейтронов в энергетических и исследовательских ядерных реакторах, в ЯМР-спектроскопии, в фундаментальных научных исследованиях, связанных с изучением структуры атомного ядра. Тяжёлая вода, так же как и входящий в её состав дейтерий, широко используется при производстве большой гаммы дейтерий содержащих меченых химических соединений, широко применяющихся в медицине, биологии, в различных отраслях химии, в ядерной физике, в ЯМР и других видах спектроскопии. В виде дейтерида лития дейтерий входит в состав термоядерного оружия. По общему убеждению специалистов, в будущем дейтерий наряду с тритием станет компонентом топлива энергетических термоядерных реакторов, в первом поколении которых будет осуществлена реакция синтеза Т (В, п) Не + 17,6 МэВ. Эта реакция в сравнении с другими реакциями синтеза, предполагающими участие изотопов водорода, характеризуется наибольшим энерговыделением и, как следствие, наименьшим расходом дейтерия (100 кг/год на 1 ГВт электрической мощности). [c.210]

    Использование тяжёлого кислорода в биологических исследованиях. Касаясь использования кислорода, меченого в биологических исследованиях, необходимо отметить работы Б. Б. Вартапетяна [15-17], проведённые в Институте физиологии растений (ИФР) АН СССР, который изучал скорость поступления и распределение Н О в тканях различных органов растений фасоли. Автор обнаружил, что не во всех органах растений сразу достигается равновесие между водой в тканях растений и водой питательного раствора. В листьях и корнях растений имеется какое-то количество труднообмениваемой воды. В других работах автор исследовал с использованием Нз О и 2 окисление катехинов, которые играют большую роль для получения качественного чая при его технологической переработке. Было показано, что в состав окисляемых соединений включается как атмосферный молекулярный кислород, так и кислород Н2О. Наряду с прямым включением в состав конденсированных продуктов, молекулярный кислород используется как акцептор водорода субстрата окисления. В своих исследованиях дыхания растений с использованием и Н О автор показал, что молекулярный кислород, поглощаемый из атмосферы при дыхании проростков пшеницы, не выделяется прямо с СО2 дыхания, а идёт на образование Н2О в тканях растения, тогда как изотопный состав кислорода углекислоты дыхания соответствует изотопному составу воды ткани. Автором разработан метод для изотопного масс-спектрометрического анализа кислорода органических соединений. [c.552]

    Важной особенностью ректификации водорода является химическая инертность молекулярного водорода. Выше (см. раздел 6.7.1) отмечалось, что реакции изотопного обмена с участием молекулярного водорода требуют применения катализаторов. Поэтому и реакции гомомолекулярного обмена водорода (Н2 + Н2 2НН ) также не идут без катализаторов. Это обстоятельство приводит к тому, что в кубе колонны, где накапливается более тяжёлый компонент, будет преобладать компонент НН. Для того, чтобы выделить молекулы Н необходимо провести на катализаторе реакцию гомомолекулярного изотопного обмена и подвергнуть ректификации трёхкомпонентную смесь, содержащую изотопные разновидности молекул в соотношении, удовлетворяющем условиям изотопного равновесия при температуре реактора, в котором проводится реакция гомомолекулярного обмена. Всё это усложняет технологическую схему и увеличивает число разделительных колонн. Тем не менее, благодаря высоким значениям коэффициентов разделения, удовлетворительной кинетике массообмена и относительной простоте процесса ректификации, этот метод был использован для получения тяжёлой воды в промышленном масштабе. [c.273]


Смотреть страницы где упоминается термин Вода тяжелая Водород тяжелым: [c.280]    [c.715]    [c.280]    [c.77]    [c.278]    [c.278]    [c.288]    [c.288]    [c.213]    [c.64]    [c.23]    [c.165]    [c.278]    [c.278]   
Физическая химия Том 1 Издание 5 (1944) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Водород в воде

Водород с тяжелой водой, таблицы

Свойства, методы получения и области применения водорода, кислорода и тяжелой воды

Трифенилметан обмен водорода тяжелой водой

Тяжелая вода

Число элементов. 16. Изотопия радиоактивных элементов Атомные веса радиоактивных изотопов. 18. Радиоактивные индикаторы. 19. Изотопия нерадиоактивных элементов и магнитный анализ. 20. Разделение изотопов. 21. Дейтерий (тяжелый водород) и тяжелая вода. 22. Законы изотопии. 23. Остальные закономерности Квантовая теория

ЭЛЕКТРОЛИЗ ВОДНЫХ РАСТВОРОВ БЕЗ ВЫДЕЛЕНИЯ МЕТАЛЛОВ Производство водорода, кислорода и тяжелой воды электролизом воды

ЭЛЕКТРОЛИТИЧЕСКОЕ ПРОИЗВОДСТВО ХИМИЧЕСКИХ ПРОДУКТОВ Производство водорода, кислорода и тяжелой воды

Электролиз водных растворов Получение водорода, кислорода электролизом воды. Получение тяжелой воды

Электролиз воды с получением водорода, кислорода и тяжелой воды

Электрохимический метод получения тяжёлой воды и изотопов водорода



© 2025 chem21.info Реклама на сайте