Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо карбонильные соединения

    Описать электронное строение карбонильных соединений железа и никеля. Для чего применяются эти соединения  [c.252]

    Карбонилы железа. Железо образует летучие соединения с оксидом углерода, называемые карбонилами железа. Пентакарбонил железа Fe( 0)5 представляет собой бледно-желтую жидкость, кипящую при 105 °С, нерастворимую в воде, но растворимую во многих органических растворителях. Fe( 0)s получают пропусканием СО над порошком железа при 150—200 °С и давлении 10 МПа. Примеси, содержащиеся в железе, не вступают в реакции с СО, вследствие чего получается весьма чистый продукт. При нагревании в вакууме пентакарбонил железа разлагается на железо и СО это используется для получения высокочистого порошкового железа — карбонильного железа (см. разд. 11.3.4). Природа химических связей в молекуле Ре(С0)5 рассмотрена в разд. 13.4. [c.527]


    Металлы семейства железа образуют особого типа комплексные соединения с СО — карбонил ы. Карбонилы — летучие жидкости, легко разлагающиеся с выделением чистых металлов, что и используется в технике (карбонильное железо, карбонильный никель). Так, например, пентакарбонил железа Ре(СО)5 — сильно преломляющая жидкость, растворимая в органических растворителях, легколетучая (т. пл. 253 К, т. кип. 376 К). [c.372]

    Тем не менее в целом, сопоставляя карбонильные и я-комплексные соединения рутения и других переходных металлов, легко видеть особую склонность рутения к октаэдрической или искаженно-октаэдрической координации. В этом отношении особенно показательно сопоставление рутения с его аналогом по группе — железом. Карбонильные соединения Ре и Ки различаются и по составу, и по координации металла, и даже по композиции комплекса в соединениях аналогичного состава. Например, Киз(СО)12, Озз(СО)12 и Рез(СО)12 при одной и той же основе в виде треугольного кластера по-разному обрамлены карбонильными группами в карбонилах рутения и осмия все группы СО концевые и все три атома М имеют координационное число 6 в карбониле железа две СО-группы мостиковые и два из трех атомов Ре имеют координационное число 7. [c.31]

    Сообщалось [18, 19] о МБ-спектрах карбонильных соединений железа Ее(СО)5, Ее2(СО)9 и Еез(СО)12. В случае Ее(СО)5 и Ее2(СО)д они имеют такой вид, как следует ожидать из их известных структур. Структура Ее,(СО),,, установленная на основании МБ-спектра. не согласуется с данными ИК-спектроскопии и предварительными результатами рентгеноструктурных исследований. Как видно из рис. 15.9, А, МБ-спектр [c.302]

    Совершенно естественно возникает вопрос, почему в этом случае атом железа образует одинарные ковалентные связи с шестью атомами углерода и приобретает заряд 4— вопреки тому, что железо имеет тенденцию приобретать положительный заряд, как в случае иона Ре2+, а отнюдь не отрицательный. Из предшествующего изложения следует, что комплексным карбонильным соединениям можно приписать структуру с наличием нескольких двойных связей между железом и углеродом, например [c.486]

    Для карбонилов прослеживается аналогия в соответствующих вертикальных триадах. Так, рутений и осмий, подобно железу, образуют пентакарбонилы Э(СО)5, представляющие собой летучие жидкости. Эти карбонилы легко образуют трехъядерные кластеры Эз(СО)12, которые термически более устойчивы. Среди карбонилов рутения известны и более сложные кластеры Ки4(СО)12, Кив(С0)18. Это твердые малорастворимые в воде, но легкорастворимые в неполярных органических растворителях вещества. В карбонильных соединениях родия и иридия имеется определенное сходство с кобальтом. Для них характерны кластерные карбонилы Эг(С0)8 — легкоплавкие кристаллические вещества, склонные к сублимации. С другой стороны, эти элементы, как и элементы первой диады платиноидов, образуют полиядерные твердые карбонилы Э4(СО)12 и Эа(С0)1в. Кроме того, для иридия известен полимер [1г(С0з)1 , чрезвычайно устойчивый по отношению к щелочам и кислотам. Для платины и палладия в отличие от никеля карбонильные производные малохарактерны, хотя и существуют. [c.424]


    Осуществлять подобное восстановление могут в соответствии-с их положением в ряду напряжения только неблагородные металлы. Щелочные металлы способны восстанавливать даже наиболее инертные карбонильные соединения (например, эфиры карбоновых кислот), в то время как магний или алюминий реагируют только-с альдегидами и кетонами. Цинк и железо способны быть восстановителями только в кислой среде. Однако и другие вещества, например благородные металлы (платина, палладий), могут действовать аналогично, отрывая необходимые для восстановления карбонильного соединения электроны от молекулярного водорода и перенося их на карбонильное соединение (каталитическое гидрирование) (см. также разд. Г. 4.5.2). [c.114]

    В общем, катализаторы на основе элементов семейства железа, по-видимому, являются оптимальными для реакций карбонилирования. Вероятно, существует тесная связь между активацией этими катализаторами окиси углерода и их способностью образовывать не очень прочные карбонильные соединения. [c.727]

    Оксимы применяются в качестве защитной группы реже, чем семикарбазоны, отчасти потому, что регенерация карбонильных групп из оксимов более затруднительна. Однако работа Брукса и сотр. [508] показывает, что оксимы могут с успехом защищать карбонильные соединения в ряду стероидов. Как было установлено, оксимы стероидов, устойчивые к действию борогидрида натрия, легко получить в пиридине. Брукс с сотрудниками изучил много методов расщепления оксимов и показал, что кетоны могут быть получены с удовлетворительными выходами гидролизом оксимов в присутствии надсерной или азотистой кислоты. Многие другие реагенты вступают в реакцию с выделяющимся гидроксиламином, поэтому могут облегчить гидролитическое расщепление оксимов. -К таким реагентам относятся сернистая кислота [508, 519], формальдегид [520], сульфат железа(1П) и другие окислители [521]. Недавно было установлено, что для расщепления оксимов можно с большим успехом применять левулиновую кислоту [522]. [c.260]

    Показана возможность и целесообразность применения полярографии для определения железа и марганца в сточных водах производства СЖК. Высказано предположение о возможности определения карбонильных соединений полярографическим методом. [c.275]

    Восстановление карбонильных соединений неблагородными металлами, например (амальгамированным) магнием или алюмини- ем, железом, цинком и др., может приводить как к продуктам реакции, отвечающим схеме (Г, 7.89а), так и к веществам, соответствующим другому направлению этой реакции [схема (Г. 7.896)]. Направление, по которому происходит реакция, зависит от природы карбонильного соединения, а также от условий реакции (металл, растворитель и т. д.). Альдегиды и кетоны восстанавливаются обсуждаемыми металлами в растворителях, содержащих активные водородные атомы (например, в воде, раз- бавленных кислотах и щелочах, спиртах), преимущественно до соответствующих карбинолов азометины в этих условиях восстанавливаются до аминов С помощью амальгам магния или алюминия кетоны в растворителях, не имеющих подвижного водорода (например, в бензоле), превращаются главным образом в гликоли (пинаконы). Напишите схему образования пинакона из ацетона согласно схеме (Г. 7.89 II в данном случае пинаколят магния) и объясните указанную выше зависимость продукта реакции от растворителя,. [c.120]

    Железо-медный катализатор, промотированный бурой и КоСО,. Выход И — 29,67%, из них спиртов — 53,6%, эфиров — 28,6%, карбонильных соединений — 15,1%, кислот—1,1% [1181 [c.494]

    Большинство альдегидов и кетонов также может быть успешно восстановлено при комнатной температуре и давлении водорода порядка 1—3 ат при помощи таких активных катализаторов, как скелетный никель или благородные металлы. Перечень некоторых реакций гидрирования карбонильных соединений, проведенных в мягких условиях, дан в табл. 6. Следует отметить, что для завершения катализируемых окисью платины реакций восстановления альдегидов при проведении их в растворах этилового спирта необходимо присутствие небольшого количества ионов двухвалентного железа. Восстановление карбонильной группы альдегидов протекает, как правило, легче, чем в случае кетонов. [c.95]

    Для ацетиленида меди (а также серебра) очень специфично присоединение ацетилена по С=0-связи карбонильных соединений с образованием ацетиленовых спиртов [687—697, 1177]. Ацетилен выступает здесь в качестве донора водорода, который присоединяется к кислороду карбонильной группы, в то время как к ее углеродному атому присоединяется этинильный остаток —С=СН (реакции этинилирования). Родственным процессом является димеризация (тримеризация) ацетилена [624—629], легко протекающая при низких температурах в растворах хлоридных комплексов одновалентной меди. Соединения меди являются, вероятно, наиболее активными катализаторами реакций этинилирования. Соли серебра ускоряют присоединение перекиси водорода к аллиловому спирту, значительно уступая по активности солям ртути, железа и вольфрамовой кислоте [951]. [c.1219]


    Распад по Руффу. Этот наиболее старый метод не является строго избирательным, однако в силу своей простоты он до сих пор широко применяется. Метод основан а окислении альдозы перекисью водорода в присутствии солей трехвалентного железа, обычно в присутствии ацетата. Несколько худшие результаты дает применение солей двухвалентного железа. В результате окисления углеродный атом карбонильной группы моносахарида (XV) отщепляется в виде углекислоты, а атом, следующий за мим в цепи, окисляется до альдегидной группы, в результате чего образуется низший моносахарид (XVI). Механизм реакции Руффа остался невыясненным. Принято считать, что вначале происходит окисление альдегидной группы моносахарида до карбоксильной группы (формула XVII), затем окисляется а-углерод-нын атом, в результате чего образуется а-кетокислота (XVIII), которая распадается обычным для а-кетокислот путем с отщеплением СО2 н образованием нового карбонильного соединения. [c.25]

    Установлено, что комплексы металлов характеризуются большим разнообразием структур. Комплексы серебра часто линейны, комплексы бериллия обычно тетраэдрические железо образует карбонильные соединения, имеющие структуру тригональной бипирамиды комплексы кобальта(П1) всегда октаэдрические, а тантал координирует вокруг себя восемь атомов фтора (рис. 22). Несмотря [c.72]

    Кроме того, было применено также осторожное окисление перманганатом, тетраацетатом свинца и другими окислителями, приводящее обычно к образованию карбонильных соединений, каталитическое расщепление с помощью солей закиси железа, щелочей и других реагентов, в результате которого также возникают альдегиды или кетоны, и, наконец, гидролитическое разложение. [c.82]

    При Д. И. Менделееве вопрос получения углеводородов путем каталитического синтеза не был разработан в-достаточной степёди. С особой показательностью он выступает в вышеупомянутых опытах Сабатье, где роль катализаторов играет никель. В носдед-нее время исследования Бергиуса показали, что гидрогенизация непредельных соединений может происходить и без наличия катализаторов, но при высоком давлении и температуре в 200— 300° С. Опыты В.. Н. Ипатьева также показали, что в случае высокого давления и- присутствия окислов металлов возможны реакции полимеризации ацетилена и его ближайших гомологов и образование ароматических углеводородов, которые при последу-юш,ей. гидрогенизации дают нафтены. Другимп исследователями произведен ряд опытов по полимеризации и гидрогенизации разного рода ненасыщенных углеводородов, в результате которых получались углеводороды аро. штического и нафтенового рядов. Одним словом, при действии воды на карбиды и в результате последующих реакций полимеризации и гидрогенизации, при наличии катализатора, пли высокого давления и температуры могла возникнуть сложная смесь углеводородов, являющихся главнейшей составной частью современных нефтей. Допуская же существование в земных недрах не только карбидных, но и карбонильных соединений железа, никеля и других тяжелых металлов, а также нитридов металлов, п принимая во внимание наличие в земной коре сульфидов, можно вполне объяснить присутствие в нефти азотистых, сернистых соединений, водорода и окиси углерода, т. е. всех второстепенных компонентов современных нефтей и все разнообразие пх. [c.304]

    Эффективно также применение перекиси водорода в щелочной среде, особенно для эпоксидирования ненасыщенных карбонильных соединений, в качестве второго метода, приводящего к образованию гаранс-гликоля. Активньш агентом в данном случае служит, очевидно, анион перекиси "ООН, весьма подходящий для присоединения к олефинам, содержащим электроноакцепторные группы. Третий метод трй с-гидроксилир6вания состоит в применении перекиси водорода в сочетании с сульфатом двухвалентного железа реактив Фентона) или с вольфрамовой кислотой. В таких системах активным агентом служит, по-видимому, свободный гидроксильный радикал [c.253]

    Уксусная кислота может быть также получена карбонили-рованием метанола оксидом углерода в присутствии катализатора. Наиболее широко применяются катализаторы, состоящие из двух компонентов металлов подгруппы железа — Ре, Со, N1, способных к образованию карбонильных соединений, а также ВРз или же Н3РО4. [c.273]

    Следует отметить, что железо, как и кобальт, мон ет образовывать карбонильное соединение HaFe( 0)4. [c.332]

    Чтобы восстановление карбонильной группы на оксиде платины было полным, рекомендуется промотировать катализатор небольшим количеством хлорида или сульфата железа(П) При гидрировании алифатических альдегидов на недостаточно отмытом от щелочи скелетном никеле интенсифицируются побочные реакции конденсации вместе с тем щелочь активирует этот катализатор. Рутений применим для восстановления в водных растворах. Палладий весьма активен при гидрированиии ароматических, но не очень эффективен при гидрировании алифатических и алицикли-ческих карбонильных соединений  [c.59]

    Четвертый метод синтеза ацеталей и кеталей из карбонильных соединений заключается в использовании ортоэфиров. Типичными катализаторами, применяемыми в спиртовых растворах, являются соляная кислота [49], хлористый водород [50, 51], хлорное железо (52], хлористый аммоний [53, 54], нитрат аммония [55] и л-толуол-сульфокислота [56]. [c.589]

    Широкое применение в органическом синтезе находят тетракар-бонилфсрраты щелочных металлов, например КНРе(С0)4 и К2ре(СО)4, легко получаемые реакцией Ре (СО) 5 с КОН или амальгамой калия (см. также разд. 15.6.3.6). Так, анион [НРс(С0)4] может применяться для восстановления оксидов олефинов в олефины [322], восстановления . -ненасыщенных карбонильных соединений в соответствующие насыщенные карбонильные соединения [323, 324], алкилбромидов в алканы [325] и хлорангидридов кислот в альдегиды [326]. Возможно, что при этом протекает нуклеофильная атака карбонилферратного аниона с последующим восстановительным элиминированием от атома железа (схема 286). [c.326]

    Были попытки отдельных исследователей причислить класс карбонильных соединений к солям псевдскислот типа Н (СО) [29, 30]. Например, Либих и Бертло считали, что карбонилы железа — это продукты взаимодействия радикала, которым они считали группу СО, с железом [4]. [c.21]

    Пентакарбонил железа, получаемый при синтезе, является довольно сильным ядом, действующим на центральную нервную систему человека и животных, на их органы дыхания и слизистые оболочки. При вдыхании его паров появляется головная боль, головокружение, тошнота, рвота и в тяжелых случаях потеря сознания. Проникая через ткани легких в кровь, неразложившаяся часть паров Ре(СО)а производит необратимые разрушения в тканях и печени. При сильной интоксикации Ре(С0)5 вызывает отек легких, который развивается в результате взаимодействия выделяющейся чрезвычайно активной окиси углерода с гемоглобином крови с образованием кар-бооксигемоглобина. Кроме того, пары Ре(С0)5 непосредственно поражают легочные ткани. При неосторожном обращении с пентакарбонилом железа возможны смертельные отравления [120]. По мнению ряда ученых [121], токсическое действие пентакарбонила железа на организм человека очень сходно с действием канцерогенного тетракарбонила никеля, для которого Московским институтом гигиены труда и профзаболеваний им. Обуха рекомендована предельно допустимая норма 0,00001 жг/л. Например, Троут, много лет изучавший карбонильные соединения металлов, пишет объяснения токсического действия, которые относятся к тетракарбонилу никеля, могут служить с некоторыми модификациями для описания физиологического эффекта пентакарбонила железа [121]. Физиологическое действие пентакарбонила железа на организм человека гораздо сложнее, чем воздействие чистой окиси углерода. [c.163]

    Продукты воздействия карбонильных соединений железа [например Ре(СО)г,], получивших в германской технике большое значение в качестве прибавок к моторному топливу для устранения стука в моторах, обладают также восстановительными свойствами по отношению к интросоединениям. В зависимости от количества щелочи можно при этом получить как амии, так и азокси-, азо-, и гидразосоедние-иия ). [c.152]

    УРУШИБАРЫ ГИДРИРОВАНИЯ КАТАЛИЗАТОРЫ. Обзоры [1—3]. Эти катализаторы были разработаны главным образом Урушибарой. Их получают осаждением металла-катализатора (никеля, кобальта или железа) из водного раствора его соли (обычно хлорида) цинковой пылью или гранулированным алюминием, Осажденный металл затем обрабатывают щелочью илн кислотой (обычно гидроокисью натрия или уксусной кислотой), у, г. к, сравнимы с катализаторами Ренея, Их можно использовать для гидрирования алкинов и алкеиов до алканов, карбонильных соединений до спиртов, ароматических нитросоедииений до аминов, а также в качестве катализаторов дегидрогенизации. Так, например, стигмастерии дегидрируется до соответствующего Д -З-кетона, причем акцептором водорода служит циклогексанон. Кроме того. У, г. х. применялись для осуществления восстановительной десульфуризации. [c.586]

    ЖЕЛЕЗА ПЕНТАКАРБОНИЛ (И, 6—7, перед ссылками). Карбонильные соединения. лгожко регенерировать из окстюв кипячением в ди- -бут иловом эфире с эквивалентным количеством Ж. п. и каталитическим количеством эфирата трехфтористого бора (6i, [c.203]

    Кислоты, большинство амидов и нитрилы не мешают определению сложных эфиров описанным колориметрическим методом. Условия гидроксиламинолиза недостаточно жестки и реакция с амидами и нитрилами в этих условиях не протекает. Наоборот, хлорангидриды активно участвуют в обоих реакциях. Карбонильные соединения в высоких концентрациях также реагируют с гидроксиламином. Переходные металлы, например медь, никель и ванадий, реагируют с гидроксамовыми кислотами, образуя окрашенные комплексы, которые мешают определению. Возможно, что ванадий вообще успешно может заменить железо в этом определении [6]. Ионы, комплексно связывающие Ре +, например хлорид, тартрат, ацетат, а также вода могут оказывать значительное влияние на интенсивность окраски при определении как сложных эфиров, так и ангидридов. [c.148]

    Производство формальдегида основано на процессах окисления и дегидрогенизации метанола-ректификата в присутствии гетерогенных катализаторов (пемзосеребряных или оксидных —же-лезо молибденовых, ванадиевых). Преобладающее количество формальдегида в стране вырабатывается по технологии, использующей пемзосеребряный катализатор. При переработке метанола в формальдегид особенно регламентируется содержание в исходном сырье соединений железа, хлора и серы, являющихся ядами для катализатора. От 15 до 20% себестоимости метанола-ректификата составляют затраты на очистку (ректификацию) метанола-сырца от нежелательных примесей — карбонильных соединений железа, альдегидов, кетонов, олефинов, эфиров и др. Поэтому выбор рационального метода очистки метанола-сырца от контактных ядов способствует повышению технико-экономических показателей производства формальдегида. [c.225]

    Известны различные методы очистки метанола-сырца. Из наиболее ранних и простых — обработка щелочью [223] или окислителями [224]. В патенте ФРГ [225] описан метод очисткл, заключающийся в следующем. Метанол-сырец смешивают с воздухом, испаряют и затем от образовавшегося при охлаждении конденсата отводят часть потока, содержание нежелательных примесей в котором меньше по сравнению с их содержанием в исходном метаноле-сырце. Метанол-сырец может быть очищен с помощью ионообменных смол, предварительно обработанных гидразином и солями металлов [226]. Для удаления карбонильных соединений железа мета ол-сырец подвергают ректификации, отбирая фракцию при температуре ниже температуры кипения метанола [227]. [c.225]

    Катализаторы — безводный хлористый алюминий, хлорное железо и треххлористая сурьма, по данным А. А. Петрова [40], непригодны для конденсации а-окисей с карбонильными соединениями. Взаимодействие а-окисей с альдегидами и кетонами в присутствии этилэфирата фтористого бора приводит к образованию циклических ацеталей — диоксоланов, по реакции  [c.242]


Смотреть страницы где упоминается термин Железо карбонильные соединения: [c.337]    [c.181]    [c.313]    [c.250]    [c.204]    [c.226]    [c.334]    [c.334]    [c.226]    [c.586]    [c.287]    [c.204]    [c.187]    [c.203]    [c.237]    [c.94]   
Учебник общей химии (1981) -- [ c.447 ]

Учебник общей химии 1963 (0) -- [ c.404 ]




ПОИСК





Смотрите так же термины и статьи:

Железа ато-соединения

Железо карбонильное

Карбонильные соединения

Карбонильные соединения карбонилы железа



© 2025 chem21.info Реклама на сайте