Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Техника безопасности в производстве кислорода

    Недостатком куба как окислительного аппарата является неполное использование кислорода воздуха. Из рис. 28 видно, что при производстве дорожных битумов содержание кислорода в газах окисления составляет 7—9% (об.), а при производстве строительных — 13—17% (об.). Повышенная концентрация кислорода в газовом пространстве куба обусловливает возможность закоксовывания стенок этого пространства и взрыва в газовой фазе. Обеспечение взрывобезопасности требует постоянной подачи водяного пара для снижения концентрации кислорода до величины, нормированной правилами техники безопасности (4% об.). [c.51]


    При использовании кислорода, получаемого в электролитическом производстве водорода, следует руководствоваться также Правилами техники безопасности и производственной санитарии при производстве ацетилена, кислорода и газопламенной обработке металлов или Указаниями по проектированию производств кислорода и других продуктов разделения воздуха. [c.275]

    ТЕХНИКА БЕЗОПАСНОСТИ ПРИ ПРОИЗВОДСТВЕ КИСЛОРОДА [c.1]

    Причины взрывов, при эксплуатации блоков разделения воздуха, хотя и очень редко, происходили взрывы. Чаще всего эти взрывы носили местный характер и приводили к разрушению некоторых частей и узлов аппарата. В отдельных случаях взрывы имели большую силу и полностью выводили из строя воздухоразделительный аппарат. Поэтому предупреждение взрывов в воздухоразделительном аппарате является одним из основных вопросов техники безопасности производства кислорода. На рис. 299 показаны места взрывов, происходивших в воздухоразделительных аппаратах. Черными кружками отмечены те участки, где взрывы происходили неоднократно в остальных местах зафиксированы лишь единичные случаи взрывов. [c.701]

    Правила техники безопасности и промышленной санитарии при производстве кислорода, ацетилена и газопламенной обработке металлов. Изд-во Машиностроение , 1966. [c.217]

    При окислении сырья воздухом содержание кислорода в газовой фазе в зоне ввода воздуха составляет 21% (об.). Особенности режима в реакторах (барботаж) исключают образование очага горения непосредственно в зоне реакции, однако для исключения горения и на последующих стадиях — после выхода отработанной газовой смеси из слоя жидкости — необходимо соблюдать в реакторе условия (температуру, перемешивание и др.), обеспечивающие достаточно полное расходование кислорода воздуха [281], или разбавлять отработанные газы инертным газом до взрывобезопасного содержания кислорода. Принцип обеспечения низкого взрывобезопасного содержания кислорода в газах окисления принят для производства окисленных битумов -в соответствии с требованиями техники безопасности содержание кислорода в отработанных газах окисления не должно превышать 4% (об.) для всех битумов, кроме высоко-плавких (рубраксы, лаковые и другие битумы, имеющие т м-пературу размягчения выше 100 °С), для которых без дополнительных обоснований установлена концентрация кислорода, равная 8% (об..). [c.176]


    Обеспечение производства ацетальдегида инертным газом было предусмотрено с азотно-кислородной установки. Накануне пуска производства выяснилось, что указанная установка может вырабатывать азот с содержанием кислорода в пределах 5 объемн. %, в то время как по действовавшим тогда правилам техники безопасности допускалось не более 1 объемн. % кислорода. [c.223]

    В книге почти не рассмотрены общие вопросы техники безопасности, которые не специфичны для производства кислорода и достаточно освещены в литературе. [c.4]

    Так, например, Правилами и нормами техники безопасности и промышленной санитарии для проектирования, строительства и эксплуатации производства этилена, синтетического этилового спирта и синтетического каучука определено, что содержание кислорода в азоте не должно превышать  [c.222]

    Правила техники безопасности и производственной санитарии при производстве ацетилена, кислорода и газопламенной обработке металлов Источники централизованного хозяйственно-питьевого водоснабжения. Правила выбора и оценки качества (ГОСТ 2761—57) [c.27]

    Особого внимания заслуживают вопросы техники безопасности в цехах электролиза воды и получения хлора и каустической соды. Основная опасность при электрохимическом получении водорода и кислорода связана с возможностью образования взрывоопасных смесей водорода с кислородом или воздухом. При содержании водорода в кислороде от 4 до 95% или от 4 до 75% в воздухе существует опасность взрыва образующейся смеси. Поэтому перед пуском и после отключения все аппараты и трубопроводы технологической схемы производства водорода и кислорода должны тщательно продуваться азотом. Работу в цехе с открытым огнем можно вести лишь после отключения установки, проведения анализа воздуха на содержание водорода и при непрерывной вентиляции производственного помещения. Всякие ремонтные работы на аппаратах, заполненных водородом, запрещаются. [c.231]

    Водород из электролизеров очистной стадии очень сильно загрязнен кислородом и после разбавления выбрасывается в атмосферу,. Водород из электролизеров продукционной стадии может быть использован после очистки от примесей хлора и кислорода, аналогично тому, как это делается в производстве хлората натрия. В процессе электролиза (особенно на очистных стадиях каскада) на аноде параллельно с выделением кислорода образуются также небольшие количества озона, который уходит с газами из электролизера. К таким электролизным газам предъявляются повышенные требования техники безопасности, они не должны попадать в атмосферу производственного помещения. [c.444]

    Сварщик (резчик, паяльщик) при газопламенной обработке металлов должен руководствоваться настоящими Правилами, Правилами техники безопасности и производственной санитарии при производстве ацетилена, кислорода и газопламенной обработке металлов , Правилами безопасности в газовом хозяйстве , Правилами устройства и безопасной эксплуатации сосудов, работающих под давлением и рабочей инструкцией по эксплуатации аппаратуры. [c.127]

    Изданная Машгизом в 1950 г. книга Ацетиленовые станции служит до настояш,его времени техническим пособием в этой области производства. После выхода в свет этой книги ВНИИАВТОГЕНом разработаны новые конструкции стационарных ацетиленовых генераторов, установки для производства растворенного ацетилена, новые интенсифицированные технологические процессы, рассчитанные на широкое внедрение в промышленность. Некоторые виды оборудования и технологические процессы разработаны изобретателями и новаторами производства. Пересмотрен ряд нормативных материалов по производству ацетилена Правила техники безопасности и производственной санитарии при производстве ацетилена, кислорода и газопламенной обработке металлов [14] — взамен Правил НКТ 1932 и 1933 гг., Правила устройства и безопасной эксплуатации сосудов, работающих под давлением [15], ГОСТы на Генераторы ацетиленовые [1], Затворы предохранительные [2], Карбид кальция [3], Баллоны стальные для газов [6] и др., Справочные материалы ВНИИАВТОГЕН. Производство ацетилена [27]. [c.3]

    При применении Э. для сварочных работ см. Правила техники безопасности и производственной санитарии при производстве ацетилена, кислорода и газопламенной обработке металлов , утв. Президиумом ЦК профсоюза рабочих машиностроения 2.04.63 с изменениями от 20.04.66. [c.72]

    При газопламенной обработке необходимо соблюдать Правила техники безопасности и производственной санитарии при производстве ацетилена, кислорода и газопламенной обработке металла . Устройство и эксплуатация газового оборудования должны соответствовать Правилам безопасности в газовом хозяйстве . [c.118]

    При эксплуатации генераторов необходимо выполнять действующие Правила техники безопасности и производственной санитарии для производств ацетилена, кислорода и газопламенной обработки металлов , утвержденные ЦК профсоюза рабочих машиностроения 2 апреля 1963 г. [c.182]


    Правила техники безопасности и производственной санитарии при производстве ацетилена, кислорода и газопламенной обработки металлов , утвержденные Президиумом ЦК профсоюза рабочих машиностроения 2/1У 1963 г. [c.185]

    Высокая температура пламени приборов и аппаратов, применяемых при сварке и пайке алюминиевых жил, представляет собой пожарную опасность. Кроме того, при сварке приходятся пользоваться горючими жидкостями или газами в сочетании с кислородом, давление которого в баллонах достигает 150 ат. Ввиду этого от работающих по сварке и пайке алюминиевых жил необходимо требовать твердого знания и соблюдения специальных правил по технике безопасности при производстве сварочных работ, а также правил устройства и безопасной эксплуатации сосудов, работающих под давлением [Л. 88]. [c.253]

    В книге изложены основы производства кислорода, приведены сведения о вспомогательных материалах, дано описание оборудования, аппаратуры и процессов получения кислорода из воздуха, описаны средства и методы контроля производства и техники безопасности. Даны схемы и технические характеристики нового, освоенного промышленностью в последние годы оборудования для получения кислорода, азота и редких газов. [c.2]

    В книге изложены основы производства кислорода, азота и редких газов, приведены сведения о вспомогательных материалах, описано оборудование, аппаратура и процессы получения этих газов из воздуха, рассмотрены методы контроля производства и правила техники безопасности. Даны схемы и технические характеристики новых, освоенных промышленностью в последние годы, установок для разделения воздуха. [c.2]

    В производстве азотной кислоты применяют, перерабатывают и получают взрывоопасные и токсичные вещества (аммиак, природный газ, оипслы азота, азотную кислоту, нитритные и нитратные соли). Поэтому нарущения технологического режима и правил техники безопасности могут привести к а) образованию взрывоопасной смеси аммиака с воздухом в контактных аппаратах, смесителях, коммуникациях и ее взрыву б) загазованности производственных помещений, территории предприятия аммиаком и окислами азота и интоксикации ими людей в) образованию взрывоопасной смеси природного газа с воздухом и взрыву ее в аппаратуре и производственных помещениях г) образованию и отложению нитрит-нитратных солей и их взрыву в нитрозных вентиляторах, турбокомпрессорах, в аппаратуре и коммуникациях узла розжига контактного аппарата и др. д) образованию взрывоопасной газо- или паровоздущной смеси в отделении концентрирования слабой азотной кислоты при подаче избыточного количества жидкого или газообразного топлива в топки концентраторов несвоевременное зажигание топлива может привести к взрыву в топке е) воспламенению замасленной поверхности и необезжиренной аппаратуры и коммуникаций при прорыве кислорода из системы получения кон-ценгрированной азотной кислоты прямым синтезом или при подаче его в загрязненную органическими веществами аппаратуру  [c.40]

    Из обзора небольшого количества исследований по горению металлов в среде кислорода следует, что этот вопрос еще изучен недостаточно. Отсюда и противоречивость указаний в инструктивных материалах. Например, Правилами техники безопасности и производственной санитарии при производстве ацетилена, кислорода и газопламенной обработке металлов [35] запрещается применение нержавеющей стали в арматуре при давлении кислорода более 6,4 Мн/м (64 кГ1см ). В Правилах техники безопасности и производственной санитарии при производстве и потреблении жидкого кислорода допускается применение нержавеющей стали в арматуре, устанавливаемой на кнслородопроводах высокого давления [1,6—22 Мн/м (16—220 кГ/см )1 [c.85]

    Чуприн-И. Ф. —Транспорт и хранение нефтепродуктов и углеводородного сырья, 1974, № 7, с. 21—23. 52. Бережковский М. И. Хранение и транспортирование химических продуктов. Л. Химия, 1982. 256 с. 53. Нормы технологического проектирования и технико-экономические показатели магистральных нефтепроводов и нефтепродуктопроводов. ВСН 17—77/Миннефтепром. М., 1977. 66 с. 54. Строительные нормы и правила. Часть II. Нормы проектирования. Глава 45. Магистральные трубопроводы. СНиП П-45—75. 55. Васильев Л. В., Максакова А. П., Шнейдерман А-. 3. Сливо-наливные эстакады для светлых нефтепродуктов и сжиженных нефтяных газов. ЦНИИТЭНефтехим. 1983. 56. Г лизманенко Д. Л. Получение кислорода. М. Химия, 1972. 752 с., 57. Инструкция по проектированию производства газообразных и сжиженных продуктов разделения воздуха. ВСН 6—75/Минхимпром. 58. Воздухоразделительные установки. Правила техники безопасности при эксплуатации. ОСТ 26-04-907—76. 59. Письмен М. К. Производство водорода в нефтеперерабатывающей промышленности. М. Химия, 1976. 208 с. 60. Орочко Д. И., Сулимое А. Д., Осипов Л. Н. Гидрогенизационные процессы в нефтепереработке. М. Химия, 1971. 352 с. [c.250]

    Лет 30-40 тому назад основным аппаратом дпя производства окисленных битумов был так называемый куб - цилиндрический аппарат периодического действия с небольшой асличиной отношения высота диаметр . Типовой куб имеет высоту 10 м и диа етр 5,3 м. В зависимости от заданной производительности на установке сооружали до 11 кубов [1,2], Каждый из них снабжали необходимой для осуществления процесса окисления контрольно-измерительной аппаратурой, а также системой, обеспечивающей безопасность эксплуатации (паротушение, взрывные пластины). Графики работы кубов (закачка сырья, окисление, паспортизация и слив битума) совмещали так, чтобы периодическая работа отдельных кубов обеспечивала непрерывность рабочы установки в целом. Как окислительный аппарат куб характеризуется низкой эффективностью, то есть невысокой степенью использования кислорода воздуха в реакциях окисления содержание кислорода в газах окисления составляет при производстве дорожных битумов 7-9 % об., строительных - 13-17% об. Это, с одной стороны, предопределяет высокие энергозатраты на производство (расход электроэнергии на сжатие воздуха для окисления, расход топлива на сжигание газов окисления), с другой стороны, обусловливает возможность закоксовывания стенок газового 17ространства ок1 слительпого аппарата н загораний и взрывов в газовой фазе. Обеспечение взрывобезопасности требует постоянной подачи инертного газа (азота или водяного пара) для снижения концентрации кислорода до величины, нормированной правилами техники безопасности. [c.42]

    Между лабораторным и промышленным синтезом органических соединений имеется ряд принципиальных различий. Например, цена химикатов, использованных в лабораторном синтезе, обычно не имеет решающего значения, поскольку синтез проводится в сравнительно малых масштабах. Поэтому при лабораторном восстановлении кетонов в спирты можно использовать сравнительно дорогой алюмогидрид лития, в то время как в промышленности для этих целей применяют сравнительно дешевые водород и никелевый катализатор. Другим примером дешевого реагента является кислород воздуха, с помощью которого в промышленности осуществляется ряд процессов каталитического окисления. Исходный материал для промышленных синтезов также должен быть дешевым и легкодоступным в больших количествах. Поэтому такой материал в большинстве случаев получают с помощью простейших методов из указанных выше источников сырья, прежде всего из природного газа и нефти. Применяемые растворители тоже должны быть дешевыми, а кроме того (по возможности), негорючими или хотя бы малогорючими. В то время как в лабораторных условиях не составляет проблемы провести синтез с использованием в качестве растворителя нескольких литров диэтилового эфира, применение этого растворителя в промышленном производстве вызывает большие трудности, связанные с его горючестью (складирование больших количеств растворителя, соблюдение строгих предписаний техники безопасности всеми работниками и т. д.), так что он применяется только в исключительных случаях. [c.241]

    В соответствии с Инструкцией по составлению проектов производства работ (ППР) для сооружения промышленных печей и кирпичных дымовых труб (ВСН 328—74/ММСС СССР) проект производства работ должен содержать 1) календарный план производства основных работ 2) строительный генеральный план объекта со схемами водо-, электро- и теплоснабжения с указанием расположения постоянных и временных транспортных путей, кранов, машин, складов и других устройств и сооружений, необходимых для строительства 3) схемы производства работ (на сложные работы и работы, выполняемые новыми методами, — технологические карты) 4) правила техники безопасности и охраны труда 5) рабочие чертежи приспособлений, а также временных сооружений 6) пояснительную записку с кратким описанием и обоснованием принятых методов производства работ с приведением технико-экономических показателей, продолжительности строительства, уровня механизации, среднедневной выработки одного рабочего в физических объемах и денежном выражении, а также определение потребности в транспортных средствах, воде, электроэнергии, паре, сжатом воздухе, горючем газе и кислороде 7) ведомость объемов работ 8) ведомость потребности в основных строительных материалах, конструкциях, деталях, полуфабрикатах и оборудовании 9) ведомость потребности в строительно-монтажном оборудовании, механизмах, приспособлениях, устройствах, инвентаре, инструменте и вспомогательных материалах 10) данные для составления сетевого графика строительства И) ведомость относящихся проектов. [c.298]

    Правила и нормы техники безопасности и про.мышленной санитарии для проектирования, строительства и эксплуатации производства синильной кислоты методом каталитического окисления метана и аммиака кислородом воздуха. Изд. Химия , 1965. [c.173]


Библиография для Техника безопасности в производстве кислорода: [c.2]    [c.349]    [c.383]    [c.3]    [c.250]   
Смотреть страницы где упоминается термин Техника безопасности в производстве кислорода: [c.106]    [c.213]    [c.189]    [c.170]    [c.130]    [c.42]    [c.117]   
Получение кислорода Издание 4 (1965) -- [ c.701 , c.720 ]

получение кислорода Издание 4 (1965) -- [ c.701 , c.720 ]




ПОИСК





Смотрите так же термины и статьи:

Кислород производство



© 2025 chem21.info Реклама на сайте