Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реактор гидродинамические условия

    Конструкция реактора с аксиальным вводом сырья и внутренней футеровкой приведена на рис. 13. В зависимости от гидродинамических условий движения газосырьевой смеси они могут быть с нисходящими или восходящими потоками. [c.47]

    Химические (реакционные) процессы, которые протекают со скоростью, определяемой законами химической кинетики. Однако химическим реакциям обычно сопутствует перенос массы и энергии, и соответственно скорость химических процессов (особенно промышленных) зависит также от гидродинамических условий. Вследствие этого скорость реакций подчиняется законам макрокинетики и определяется наиболее медленным из последовательно протекающих химического взаимодействия и диффузии. Общие закономерности протекания химических процессов и принципы устройства реакторов рассматриваются в специальной литературе .  [c.13]


    Инвариантность математического описания химического процесса к масштабам реактора достигается через инвариантность описаний каждого из физических и химических явлений, другими словами, математическое моделирование химического процесса как единого целого идет через раздельное изучение его химических, массо- и теплообменных и гидродинамических явлений с составлением математического описания для каждого из них, инвариантного к масштабам реактора. При этом как в изучении отдельных классов явлений, связанных с тепловым и концентрационным полем химического процесса и его гидродинамическими условиями, так и в составлении математического описания [c.13]

    Получение требуемой величины коэффициента обратного перемешивания прежде всего зависит от геометрических и конструктивных параметров тарелки, гидродинамических условий в реакторе и его размеров, а также физических характеристик потока. Как и для N, обобщенных уравнений, пригодных для инженерных расчетов значений К, в литературе практически нет. Исключением являются прямоточные барботажные реакторы, секционированные ситчатыми тарелками. Для определения в таких реакторах [c.91]

    В целом такое толкование зависимости изменения характера коэффициента продольного переноса как и профиля кривой распределения времени пребывания частиц в реакторе от гидродинамических условий находится в качественном соответствии с экспериментальными данными. Поэтому ячеистую модель с застойными зонами следует, ио-видиМому, рассматривать как достаточно адекватную реальным процессам в газофазных и жидкофазных реакторах. [c.96]

    В действительности для некоторых веществ условное время пребывания меньше, для некоторых — больше. Это зависит от типа реактора и гидродинамических условий. [c.29]

    В качестве иллюстрации на рис. XV-28 приведена простая схема, состоящая из реактора с одним адиабатическим слоем катализатора при любых гидродинамических условиях и внешнего теплообменника с байпасом для регулирования температуры перед слоем катализатора. [c.516]

    В общем случае, для строгого и обоснованного расчета каталитического реактора прежде всего необходимо располагать всеми данными, характеризующими скорость химического превращения, теплопередачи и массообмена, а также влияние гидродинамических условий проведения процесса затем составить и решить соответствующие уравнения материальных и тепловых балансов, кинетики, гидродинамики, диффузии и теплопередачи. При этом для решения системы указанных уравнений используют электронные вычислительные машины. При проектировании многих реакторов до последнего времени преимущественно используются методы приближенного расчета. Это наиболее характерно для реакторов с кипящими слоями катализатора, в которых кинетическая картина процесса очень сложна, изучена еще недостаточно и их расчет, в значительной степени, базируется на весьма немногочисленных экспериментальных данных, полученных из имеющегося опыта промышленной эксплуатации. [c.253]


    Особенно большую роль гидродинамические условия играют ири осуществлении жидкофазного гидрокрекинга в присутствии суспензированных порошкообразных катализаторов. В этих условиях возникают значительные внешнедиффузионные и гидродинамические осложнения из-за неизбежного вспенивания водородом реагирующей жидкости со взвешенным в ней катализатором. Вспенивание должно ухудшать каталитическое и термическое расщепление сырья, так как оно уменьшает содержание катализатора в единице объема реактора и сокращает длительность пребывания в нем реагирующей жидкости. Однако вспенивание благоприятствует реакции гидрирования, поскольку способствует увеличению поверхности раздела фаз и облегчает подвод водорода к активной поверхности катализатора. [c.159]

    В трубчатых гомогенных реакторах скорость потока, как правило, весьма велика и гидродинамические условия соответствуют области развитой турбулентности. Можно принять, что для этих условий характерен так называемый режим идеального вытеснения, или поршневой режим, который заключается в следующем  [c.35]

    При осуществлении непрерывных процессов, а также для обеспечения необходимых температурных условий на различных стадиях реакции отдельные аппараты компонуются в каскад реакторов. В таком каскаде жидкость проходит последовательно через все аппараты, а газ может подаваться последовательно или параллельно в каждый реактор. В случае, если количество газа, рассчитанного по стехиометрическому уравнению реакции, недостаточно для обеспечения оптимальных гидродинамических условий в каждом аппарате, а разбавление инертным газом нежелательно, каскад может работать по замкнутой циркуляционной схеме (рис. 45). Согласно этой схеме, основная масса газа транспортируется через все аппараты каскада циркуляционным компрессором 1. Свежий газ в количестве, достаточном для реакции, вводится в циркуляционной контур компрессором 2. На выходе из 6 83 [c.83]

    Конструктивное оформление реакционных устройств, оснащенных закручивающими устройствами различного типа, обеспечивает стабильность гидродинамических условий во всем объеме реактора без внесения в него дополнительных элементов, необходимых для поддержания однородности гидродинамических свойств газовой фазы. [c.322]

    Рассмотрим конструкторские расчеты отдельного адиабатического реактора с неподвижным слоем катализатора. Такой реактор, в частности, используется для реакции дегидрирования бутилена в бутадиен (см. 8.3.2), поэтому полезно привести расчеты его, выполненные в [3, с. 244]. Кроме того, по гидродинамическим условиям реактор дегидрирования близок к аппарату идеального вытеснения. Катализатор может быть размещен одним слоем или несколькими (например, тремя) слоями в последнем случае осуществляется дробная подача (между этими слоями) водяного пара. [c.111]

    В случае вновь создаваемого производства данные для изучения кинетики в локальной области должны быть получены па модели промышленного реактора. При этом гидродинамические условия и условия распределения температурных полей па модели реактора нужно обеспечить такими, какие можно ожидать в реакторе промышленных размеров. [c.166]

    Модель идеального вытеснения широко используют в химической технологии при описании аппаратов, работающих по принципу вытеснения, например трубчатых реакторов и теплообменников. Ее достоинством является относительная простота решения уравнений математического описания, построенного с применением данной модели, и вместе с тем приемлемая во многих случаях точность воспроизведения реальных гидродинамических условий. [c.59]

    Для гетерогенных реакций необходимо учитывать, в какой области протекает процесс диффузионной, кинетической или смешанной. Ранее был приведен метод оценки точности исключения диффузионного сопротивления при получении информации о кинетике гетерогенных химических процессов на лабораторных установках (см. стр. 393). Этот прием должен учитываться при масштабировании гетерогенных реакторов. Изменяя гидродинамические условия, процесс в некоторых случаях можно перевести в желаемую область течения. [c.424]

    Механизм коксования, установленный в лабораторных условиях, дополняют данными, полученными в промышленных необогреваемых камерах высотой 25 м и диаметром 5 м. После подключения в систему подготовленной камеры с верха ее через определенные интервалы времени Отбирают иробы для анализа и фиксируют режимные параметры. Исследуют также образцы коксов, отобранных из различных зон реактора. По-видимому, гидродинамические условия коксообразования оказывают влияние на внутри- и межмолекулярные взаимодействия и на структуру (в том числе и по- [c.179]

    Реакторы со взвешенным слоем мелкозернистого катализатора находят все большее применение в промышленности, в связи с чем разработка методов их расчета имеет важное значение. Сложность расчета реакторов этого типа вызывается тем, что скорость реакций в этом случае, кроме прочего, зависит от гидродинамических условий в реакторе (перемешивание катализатора и газа, проскок газовых пузырей и т. д.). [c.300]

    Создание высокопроизводительных линий производства ПЭНД с единичной мощностью 100 тыс. т/год и более с особой остротой выдвигает проблему объема основного аппарата — реактора. Габаритами реактора определяются не только металлоемкость и производственные площади, но и гидродинамические условия процесса, в том числе равномерность распределения катализатора и мономера в реакционном объеме, отсутствие локальных участков перегрева и соответственно надежность работы реактора, однородность полимера, т. е. качество продукции. [c.135]


    Необходимо отметить, что статистический метод расчета времени пребывания является в ряде случаев более универсальным, чем аналитический. Это особенно проявляется при расчете времени пребывания частиц в системах с большим числом реакций и сложными гидродинамическими условиями. Однако применение статистического метода к расчету реакторов в форме функции распределения времени пребывания вообш,е весьма ограничено и, как будет показано в дальнейшем, возможно лишь для изотермических процессов с реакциями нулевого или первого порядка. [c.27]

    Книга является монографией, наиболее полно освещающей и обобщающей вопросы теории и практики процессов химического взаимодействия газов и жидкостей. В ней рассмотрены физикохимические основы и дано математическое описание этих процессов, их кинетика в различных гидродинамических условиях работы газожидкостных реакторов, абсорберов и их лабораторных моделей, элементы расчета соответствующих аппаратов. В книге приведено большое количество числовых примеров. Ряд разделов может спужить ценным пособием для экспериментаторов в области процессов массопередачи. [c.4]

    Гомогенные реакторы. Консфуктивно гомогенные реакторы выполняются в виде аппаратов с мешалками или трубчатых (проточных) аппаратов. При известных кинетике и механизме реакций выбор типа реактора определяется условиями обеспечения равномерности распределения реагентов в объеме. Наличие фадиентов конценфации, температуры приводит к изменению физико-химических свойств реагентов (вязкости, плотности и т. д.) и, как следствие, к искажению профиля скоростей, неравномерному протеканию реакции по объему или сечению реактора. В случае изотермических реакций изменение характеристик реагентов в ходе протекания реакции может привести к неустойчивости системы в целом, т. е. к нарушению установившегося состояния по скоростям теплоподвода и теплоотвода. Характерными вопросами, решаемыми при проектировании этих реакторов, являются оценка гидродинамической сфуктуры потоков и обеспечение необходимого температурного режима реактора. [c.18]

    Таким образом, основным условием оптимального проведения сложных реакций является правильный выбор аппаратурного оформления процесса с учетом характера движения жидкости в реакторе. Это условие определяется стехиометрическими соотношениями и наблюдаемой кинетикой реакций. Для обеспечения высокого выхода целевого продукта можно осуществлять процесс при высоких и низких концентрациях (параллельные реакции) или при постоянно соотношении концентраций (последовательные реакции) различных компонентов. В соответствии с. указанным требованием выбирают подходящую гидродинамическую модель, которая может быть реализована в реакторах периодического и пол упер иодического действия идеального вытеснения или в проточном реакторе идеального, смешения при медленном или быстром введении исходных реагентов. [c.199]

    При проектировании реакторов, в которых осуществляются процессы между газообразной фазой и твердыми частицами, необходимо учитывать три фактора кинетику химической реакции, протекающей на поверхности одиночной частицы, распределение размеров частиц в исследуемом слое материала и гидродинамические условия, при которых находятся в аппарате газовая и твердая фазы. В тех случаях, когда кинетическая картина процесса сложна и недостаточно изучена, когда продукты реакции образуют обволакивающую среду и температура в реакторе значительно изменяется от точки к точке, исследование процесса затрудняется, расчет его в значительной степени базируется на экспериментальных данных-, накопленных лшоголетним опытом эксплуатации производства, и вновь создаваемые аппараты почти не отличаются от ранее действовавших. Доменные печи являются, вероятно, наиболее типичным промышленным примером подобных систем. [c.346]

    Краевые гидродинамические условия условие прилипания и непротека-ния на твердых стенках, отложениях и инкрустациях заданный профиль скорости на входе в реактор и мягкие условия на выходе из него (нулевые первые производные). Для концентрации и телшературы могут быть поставлены краевые условия первого, второго или третьего рода, что определяется спецификой поставленной задачи. Для численного исследования турбулентных режимов течения возможна реализация к-е модели. [c.39]

    В качестве примера расчета массообменного реактора для очистки газовых выхлопов от вредных примесей ниже рассмотрен принцип расчета пенного газопромывателя, работающего при режиме, близком к полному смешению. Реактор этого типа может служить для очистки газов от аэрозолей, газообразных и парообразных вредных примесей. В последнем случае применяют многополочпые пенные аппараты. Расчет любого многополочного аппарата сводится к определению необходимой поверхности массообмена и требуемого числа полок. Эти величины можно рассчитать по известным значениям коэффициента массопередачи км или КПД одной полки аппарата т). Значения йм и т] определяются экспериментально для различных систем в зависимости от гидродинамических условий процесса и физико-химических характеристик системы. Некоторые критериальные уравнения, применяемые для определения к и ti, приведены в ч. I. [c.241]

    На образование и степень упорядоченности ассоциатов влияет не только природа сырья, но и гидродинамические условия в реакторе. После выделения асфальто-смолистых веществ в отдельную фазу ассоциаты начинают быстро взаимодействовать друг с другом, что сопровождается образованием твердой фазы и сильным выделением газов. Ассоциаты сращиваются друг с другом ио месту свободных валентностей в сложных радикалах в дальнейшем разрозненные ассоциаты химически сшиваются таким образом в прочную сплошную массу. Выделяющиеся газы встречают при выходе тем большее сопротивление, чем выше вязкость пластическ<ж массы. В соответствии с этим в слое развивается давление оно и является той силой, которая вызывает всненивание, а иногда и выбросы продукта. [c.182]

    Коэффициент инвариантен по отношению к конструктивным особенностям реактора, поскольку можно полагать, что в подобных гидродинамических условиях обеспечивается постоянство кинетических характеристик, в частности констант скоростей реакций, энергий активации и предэкспоненциальных множителей для конкретных систем ка-та.1изатор - окисляемое вещество (носящих, естественно, эффектив-нь й характер при использовании для их расчета эффективного времени контакта). [c.187]

    Существующие методики технологического расчета полимеризаторов для производства синтетических каучуков базируются большей частью на знании химической кинетики, которая иссле о ется в сосудах лабораторного масштаба. При этом, как правило, игнорируется влияш1е явлений тепломассопереноса и гидродинамики, па смотря на то, что в промышленных реакторах эти явлеш1я оказывают существенное влияние па наблюдаемую кинетику. Поэтому целесообразно развитие подхода, в рамках которого учитывается, что макрокш1етика процесса полимеризации в промышленном реакторе рассматривается как результат совместного влияния химической кинетики и кинетики переноса с учетом гидродинамических условий и структуры потоков. При этом параметрами математических моделей выступают физические и [c.78]

    ДФ на основе реализации рассмотренных выше факторов ее до достижения высоких степеней самонаполнения системы, а при исчерпании этих факторов - использование внешних энергетических воздействий, позволяющих поддерживать ДФ в разрушенном, распределенном по всему объему состоянии вплоть до установления степени наполнения системы, при которой она становится кинетически устойчивой из-за образования прочных коагуляционных контактов (после снятия внешних энергетических воздействий). Коагуляционная структура может формироваться также путем постепенного осаждения ДФ по мере образования ее в объеме свободнодисперсной части системы вплоть до полного израсходования вещества последней или до некоторого заданного уровня накопления слоя коагулянта, после чего свободно дисперсная система отделяется. В этом случае агрегативная и кинетическая устойчивость ДФ может быть достаточно низкой, а их уровень должен определяться требованиями к составу, свойствам и размерам ее частиц. На практике часто реализуются промежуточные между этими двумя крайними случаями варианты формирования коагуляционных структур (например, коксование в кубах и необогреваемых камерах) и, как правило, условия их формирования в рассматриваемом аспекте полностью определяются качеством загрузки реактора, температурой, давлением и гидродинамикой, определяемой объемной скоростью подачи сырья и интенсивностью его физико-химических и химических превращений. К сожалению, при этом технологические и гидродинамические условия оказываются "стандартизованными" особенностями действующей установки, но не оптимальными с точки зрения формирования связнодисперсной системы с заданной структурой и свойствами, т.е. КМ оказывается в этом аспекте лишь частично управляемой. [c.110]

    Если химическая реакция протекает в потоке, то на кинетику реакции накладываются гидродинамические условия системы. Макро-ккнетика изучает закономерности протекания физических (массо- и теплоперенос) и химических процессов во времени и пространстве ее законы и методы исследования представляют собой теоретическую основу современной химической технологии. При проектировании химического производства, в частности химических реакторов, необходимо учитывать скорости химической реакции, массопереноса и теплопереноса. Ярким примером процесса, где реакция, нагрев и диффузия вещества протекают одновременно, является горение, причем режим горения, как мы видели, определяется характеристиками всех трех процессов. Законы макрокинетики используются для построения моделей земной атмосферы, звездных туманностей, моделей образования и развития звезд и планет. [c.313]

    Исследования по аэродинамике контактных аппаратон, разработка и испытание принципиально новых конструкций каталитических реакторов, обеспечивающих эффективное проведение нестационарных процессов к однородных гидродинамических условиях. [c.260]

    Чтобы избежать включения указанных уравнений в состав математической модели, рекомендуется в качестве модели реактора принимать аппарат минимальной производительности, при габаритных размерах которого еще можно соблюдать те же гидродинамические условия и распределение температурных полей, что и для реактора промышленных размеров (см. главу VI). В рассматриваемом случае создание математической модели становится вполне реальным, а ее использование для перехода от габаритов модели к промышленному реактору, т. е. для масштабирования — достаточно надежным. [c.22]

    Чтобы выявляемая локальная кинетика для процесса в реакторе без перемепгавания в направлении потока отражала условия протекания процесса в промышленном реакторе, необходимо предъявлять известный минимум требований к модели реактора. Так, длина реакционной зоны (или слоя катализатора) для модели должна быть той же, что и для промышленного реактора. При этом линейные скорости по сечению зоны будут в обоих случаях одинаковы, что обусловит одинаковые гидродинамические условия протекавия процесса. - [c.183]


Смотреть страницы где упоминается термин Реактор гидродинамические условия: [c.209]    [c.123]    [c.88]    [c.243]    [c.132]    [c.83]    [c.397]    [c.72]    [c.16]    [c.4]    [c.278]   
Теория рециркуляции и повышение оптимальности химических процессов (1970) -- [ c.16 ]




ПОИСК







© 2025 chem21.info Реклама на сайте