Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хрома оксид определение кислорода

    В практике атомно-абсорбционного анализа наибольшее применение получили два пламени воздушно-ацетиленовое и пламя оксида азота (I) с ацетиленом. Первый тип пламени успешно применяют для определения щелочных и щелочноземельных элементов, а также таких металлов, как хром, железо, кобальт, никель, магний, молибден, стронций, благородные металлы и др. Для некоторых металлов (хром, молибден, олово и др.) чувствительность определений может быть увеличена применением обогащенной смеси. К элементам, для определения которых практически бесполезно использовать воздушно-ацетиленовое пламя, относятся металлы с энергией связи металл — кислород выше 5 эВ (алюминий, тантал, титан, цирконий и др.). Пламя ацетилена с воздухом обладает высокой прозрачностью в области длин волн более 200 нм, слабой собственной эмиссией (особенно обедненное пламя) и обеспечивает высокую эффективность атомизации более чем 30-ти элементов. Частично ионизируются 0 нем только щелочные металлы (цезий 65%, рубидий 41 %, калий 30%, натрий 4 %, литий 1 %). [c.146]


    Как уже говорилось, некоторые металлы в определенных условиях переходят в пассивное состояние — на их поверхности образуются слои или пленки, состоящие из адсорбированного кислорода, из оксида данного металла или из его соли. Присутствие таких слоев и их структура сильно влияют на скорость коррозии металла в ряде случаев эти слои обладают защитным действием, вследствие чего металл корродирует лишь ничтожно медленно. В условиях атмосферного воздуха пассивирующие пленки образуются на хроме, никеле, алюминии, цинке. [c.690]

    Фирма Карло Эрба разработала специальный элементный газохроматографический анализатор для определения азота. Сожжение образца в оловянной или серебряной капсуле проводят в присутствии кислорода, 25 мл которого вводят одновременно с пробой в реактор. Образовавшиеся продукты окисляются на слое оксида хрома при 950 °С и поступают в трубку с реагентом, где поглощаются водяные пары, диоксид углерода [c.197]

    Так как ряду оксидов присущи полупроводниковые свойства, то пассивирующие слои часто обладают определенной электронной проводимостью. Наличие электронной проводимости делает возможным протекание на оксидном слое других окислительно-восстановительных реакций. Хорошей электронной проводимостью обладают пассивирующие слои на железе, никеле, хроме и сравнительно тонкие слои на благородных металлах. При достаточно высоких положительных потенциалах на этих электродах в водной среде протекает реакция выделения кислорода  [c.353]

    Для разложения хроморганических соединений использованы сожжение в токе кислорода и минерализация кислотами. Разработаны условия перевода в раствор оксида хрома (И1), получаемого при сожжении вещества в трубке в токе кислорода, что сделало возможным специфическое определение хрома в одной навеске с углеродом и водородом. Окислительное сожжение в кислороде является одним из универсальных способов минерализации органических соединений, и разработка специфических методов определения гетероэлементов в минеральном остатке после такого сожжения позволяет существенно расширить возможности этого метода. [c.199]

    У диамагнетиков (водород, инертные газы и др.) ц < 1. Для парамагнетиков (кислород, оксид азота, соли редкоземельных металлов, соли железа, кобальта и никеля и др.) ц > 1. Ферромагнетики (Ре, N1, Со и их сплавы, сплавы хрома и марганца, Сс1) имеют магнитную проницаемость ц 1. Магнитная проницаемость ферромагнетиков нелинейно зависит от напряженности внешнего поля. Кривая намагничивания В (я) ферромагнетиков имеет вид характерной петли гистерезиса, по ширийе которой различают материалы магнитомягкие (электротехнические стали) и магнитожесткие (постоянные магниты). При определенных значениях напряженности поля индукция достигает насыщения. [c.38]


    Структура пассивной пленки на сплавах, как и пассивной пленки вообще, была описана и теорией оксидной пленки и адсорбционной теорией. В соответствии с оксидно-пленочной теорией, защитные оксидные пленки формируются на сплавах с содержанием легирующего компонента выше критического, а незащитные — на сплавах ниже критического состава. В случае преимущественного окисления пассивной составляющей сплава, например хрома, защитные оксиды (такие как СГаОз) формируются, только если содержание хрома в сплаве превышает определенный уровень. Эта точка зрения не позволяет делать никаких количественных прогнозов, а тот факт, что пассивная пленка на нержавеющих сталях может быть катодно восстановлена и не соответствовать стехиометрическому составу, остается необъясненным. Согласно адсорбционной теории, в водной среде кислород хемо-сорбируется на Сг—Ре-сплавах выше критического состава, обеспечивая пассивность, но на сплавах ниже критического состава он реагирует с образованием непассивирующей оксидной пленки. Насколько данный сплав благоприятствует образованию хемосорбционной пленки или пленки продуктов реакции, зависит от электронной конфигурации поверхности сплава, особенно от взаимодействия -электронов. Так называемая теория электронной конфигурации ставит в связь критические составы с благоприятной конфигурацией -электронов, обеспечивающей хемосорбцию и пассивность. Теория объясняет природу взаимодействия электронов, определяющую, какой из компонентов придает сплаву данные химические свойства, например, почему свойства никеля преобладают над свойствами меди в медно-никелевых сплавах, содержащих более 30—40 % N1. [c.91]

    Одним из наиболее распространенных неорганических полимерных носителей реагентов являются силикагели. Их модифицируют различными реагентами и часто наполняют ими тест-трубки для анализа воздуха. Например, для определения метанола и этанола в воздухе, химического потребления кислорода в воде используют оксид хрома(У1) в среде серной и фосфорной кислот для определения ЗОг в воздухе — бромкрезо-ловый зеленый для определения хлора — флуоресцеин и бромид калия для определения оксидов азота — иодид калия и крахмал для определения остаточного (5 10 %) х юра в воде — о-толидин. Силикагели с нековалентно иммобилизованным ксиленоловым оран- [c.215]

    Количественное окисление летучих продуктов заканчивается при прохождении их через слой оксида хрома, который термоустойчив, не образует лри окислении оксидов азота, не адсорбирует продуктов сожжения. Затем летучие продукты проходят через восстановительный реактор, заполненный медной насадкой. При 650 °С происходит свя-3 ыв ание неиз р асходов анно-го кислорода и восстановление оксидов азота. Затем продукты превращений (азот, диоксид углерода и вода) разделяются на хроматографической колонке, заполненной порапаком Q (рис. VH-l) [24]. Одно заполнение реактора используют для проведения 1000 анализов, продолжительность одного определения 0,1 [c.197]

    Для получения пламени используют различные комбинации горючих газов с окислителями, например, водорода, пропана или ацетилена с воздухом или оксидом азота. В практике атомно-абсорбционного анализа чаще всего применяют воздушноацетиленовое пламя. Его используют для определения щелочных и щелочно-земельных элементов, а также таких металлов, как хром, железо, кобальт, никель, магний, молибден, стронций, благородные металлы и др. В воздушно-ацетиленовом пламени нельзя определять (слишком высокая энергия связи металл-кислород) алюминий, тантал, титан, цирконий и др. [c.236]

    В поисках реагента, отвечающего всем перечисленным требованиям, были сопоставлены свойства оксидов, фторидов и карбонатов м-нолих металлов. Оказалось, что круг веществ, которые подходят по всем параметрам, довольно ограничен. Фтор дает соединения почти со всеми элементами периодической системы, но лишь немногие з них устойчивы при высоких температурах и нелетучи. К наиболее тугоплавким принадлежат фториды щелочноземельных металлов, а также лантаноидов и некоторых других элементов, например никеля, хрома, алюминия и др. Фториды щелочных металлов сравнительно низкоплавки наиболее тугоплавкий среди них — фторид натрия имеет большое давление пара уже при температуре плавления (980—1090 °С). Рассматривая данные о температурах плавления и кипения некоторых фторидов, следует учитывать, что в атмосфере кислорода устойчивость этих веществ может оказаться пониженной. Например, фторид кобальта 0F2 плавится при 1200 °С, но в атмосфере кислорода уже при 400 °С начинает разлагаться с образованием оксида. Фторид никеля возгоняется при 1000 °С, а фториды алюминия и хрома— при 1290 и 1200 °С соответственно, но весьма вероятно, что при микроаналитических определениях их летучесть будет заметна уже при значительно более низких температурах. Что касается карбонатов, то оказалось, что многие термостойкие оксиды металлов образуют слишком устойчивые карбонаты. Так, например, разложение карбоната кальция завершается при 1000— 1100°С. Карбонаты стронция и бария имеют еще более высокие температуры разложения. По той же причине неприменимы и соединения щелочных металлов. [c.110]


    Разложение сожжением в токе кислорода при определении хрома, углерода и водорода из одной навески. Сожжение проводят в стандартной аппаратуре для микроопределения углерода и водорода, используя контейнеры длиной 60—90 мм, диаметром 7—11 мм, пустые или наполненные слоем дробленого кварца. Кварцевые контейнеры, содержащие остаток СггОз, помещают вертикально в химический стакан соответствующего размера, пипеткой вносят в каждый коцтейнер свежеприготовленную смесь концентрированной серной кислоты (1 мл) и 5%-ного раствора бромата калия (6 мл). Остаток должен быть покрыт раствором. В стакан наливают воду так, чтобы ее уровень был не ниже уровня в контейнерах, и кипятят на электроплитке до полного растворения оксида хрома. Продолжительность растворения зависит от диаметра контейнера и количества дробленого кварца. Выделившийся бром удаляют либо нагреванием контейнеров в течение 15 мин в кипящей водяной бане, либо прибавлением 5 капель 0,2%-ного раствора фенола в аликвотную часть раствора перед приготовлением комплекса. Раствор переносят в мерную колбу вместимостью 100 мл, доводят до метки водой, перемешивают и определяют хром, как описано выше. [c.202]


Смотреть страницы где упоминается термин Хрома оксид определение кислорода: [c.254]    [c.307]    [c.557]    [c.124]    [c.124]    [c.124]    [c.434]   
Методы разложения в аналитической химии (1984) -- [ c.254 ]




ПОИСК





Смотрите так же термины и статьи:

Кислород в оксидах

Кислород определение

Оксиды определение кислорода

Хрома оксиды



© 2025 chem21.info Реклама на сайте