Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронная конфигурация теория валентности

    Согласно теории спин-валентности, валентность элемента определяется числом неспаренных электронов в атоме его. Так, литий характеризуется электронной конфигурацией  [c.65]

    В большинстве учебников, вплоть до современных, валентность определяется как способность атома образовывать различное число химических связей с другими атомами. Современные представления о природе химической связи основаны на электронной (спиновой) теории валентности (наибольший вклад в развитие этой теории внесли Г.Льюис и В.Коссель), в соответствии с которой атомы, образуя связи, стремятся к достижению наиболее устойчивой (т.е. имеющей наименьшую энергию) электронной конфигурации. При этом электроны, принимающие участие в образовании химических связей, называются валентными. [c.43]


    Теория спин-валентности обосновывает также, почему, например, у бериллия валентность не может быть больше двух. Это объясняется следующим. Как показывает электронная конфигурация (И), 1з - [c.66]

    Для расчета химических связей в комплексах и объяснения их свойств используют различные модели метод валентных связей теорию кристаллического поля и метод молекулярных орбиталей Метод валентных связей (ВС). Согласно этому методу (см гл. II), при образовании комплексов между комплексообразова телем и лигандами возникает ковалентная связь по донорно акцепторному механизму. Комплексообразователи имеют ва кантные орбитали, т. е. играют роль акцепторов. Как правило в образовании связей участвуют различные вакантные орбитали комплексообразователя, поэтому происходит их гибридизация (см. И.З). Лиганды имеют неподеленные пары электронов и играют роль доноров в донорно-акцепторном механизме образования ковалентной связи. Например, ион имеет электронную конфигурацию 3 " 45Чр  [c.293]

    Мы привели здесь это курьезное замечание потому, что подобное мнение среди химиков стало почему-то распространенным. Валентное состояние атома — не просто некий нуль отсчета . Оно было введено в теорию ВС с целью распространить ее на случай, когда число неспаренных электронов в основном состоянии атома меньше числа образуемых им двухэлектронных двухцентровых связей. Вместе с тем, это понятие используется и в методе молекулярных орбиталей, в рамках которого оно обычно понимается как эффективная электронная конфигурация с дробными заселенностями АО и эффективными зарядами, что позволяет учесть как промотирование электронов с одних АО на другие, так и их перенос от атома к атому при образовании химических связей (см. приведенный выше пример для ряда С—СО— —СО2). И используется это понятие в обоих методах не только для построения качественной теории, но и при квантовомеханических расчетах .  [c.174]

    Формулируя в самом общем виде, можно сказать, что причина образования молекулы из двух атомов заключается в понижении полной энергии при сближении атомов. Эта энергия в основном представляет собой энергию электронов колебательная и вращательная энергия молекулы, хотя и имеет иногда заметную абсолютную величину, мала по сравнению с электронной энергией. Мы обсудим этот вопрос позднее более подробно, но сейчас примем, что изменение энергии при образовании молекулы из атомов обусловлено главным образом изменением электронной энергии . В дальнейшем будет показано, что именно электронная энергия играет основную роль почти во всех молекулярных явлениях. Например, тот факт, что водород существует в виде двухатомных частиц Нг, а не трехатомных Нз, можно объяснить тем, что полная энергия Нз больше, чем сумма энергий Нг и Н. Аналогично этому в молекуле воды валентный угол НОН равен 104,5°, а длина каждой связи ОН составляет 0,96 А потому, что именно при этих значениях внутренних координат полная энергия молекулы минимальна. Удовлетворительная теория валентности должна показать, как электронная энергия зависит от этих координат. Следовательно, мы должны не только определить равновесную конфигурацию, но также и обсудить, как изменяется энергия при отклонении молекулы от равновесной конфигурации. Это позволит найти упругую силу при любой деформации и тем самым получить все сведения, необходимые для вычисления частот нормальных колебаний. По этой причине нельзя отделять теорию валентности от теории инфракрасных спектров и спектров комбинационного [c.19]


    Приведенный обзор показывает, что ионы МпО устойчивее ионов МПО4. Этот факт в рамках теории молекулярных орбиталей (см. с. 516) можно объяснить следующим образом. Ион МпО содержит 24 валентных электрона 7 электронов атома Mn(3d 4s ), 16 электронов четырех атомов О (2р ) и 1 электрон на счет заряда иона. Ион МпО , имеющий заряд на единицу больше, содержит уже 25 электронов. Распределение валентных электронов по молекулярным орбиталям ионов МпО и МпО соответствует следующим электронным конфигурациям  [c.579]

    Восьмиэлектронные молекулы, в частности НгО, обладают, как и предсказывает качественная теория МО, угловой конфигурацией связей. В молекуле НгО восемь валентных электронов заполняют все четыре уровня МО, показанные на рис. 53. Такая электронная конфигурация молекулы сильно отличается от предсказываемой теорией гибридизации АО (раздел 5.1). Согласно последней в молекуле воды обе неподеленные электронные пары совершенно равноценны. Распределение же электронов на схеме уровней МО (рис. 53) обнаруживает только один несвязывающий уровень, который может быть занят лишь одной неподеленной электронной парой. [c.161]

    Теперь атом Н имеет на своей валентной орбитали два электрона, подобно гелию, а у атома I восемь электронов, как у Хе. Льюис выдвинул следующий принцип атомы образуют химические связи в результате потери, присоединения или обобществления такого количества электронов, чтобы приобрести завершенную электронную конфигурацию атомов благородных газов. Тип образующейся связи-ионный или ковалентный-зависит от того, происходит ли перенос электронов или их обобществление. Валентность, проявляемая атомами, определяется пропорциями, в которых они должны объединяться, чтобы приобрести электронные конфигурации атомов благородных газов. Теория Льюиса объясняет тип связи и последовательность расположения атомов в молекулах. Однако она не позволяет объяснить геометрию молекул. [c.466]

    Соединения N1 (0), Pd (0), Р1 (0). Как и у других -элементов, нулевая (а также отрицательная) степень окисления у никеля и его аналогов проявляется в соединениях с лигандами сг-донорного и тг-акцепторного типа СО, РГз, СН". При этом при электронной конфигурации центрального атома строение комплексов с лигандами сильного поля чаще всего отвечает структуре тетраэдра (рис. 242). В рамках теории валентных связей это соответствует рЗ-гибридизации валентных орбиталей центрального атома  [c.664]

    Рассмотрим атом кислорода. В его внешнем электронном слое при п = 2 имеется шесть электронов, так что его электронная конфигурация есть 23 2р . На з-орбитали электроны имеют антипараллельные спины. Электроны с анти-параллельными спинами спарены и, согласно классической теории валентности,-в химической связи не участвуют. Они образуют так называемые неподеленные пары. Из четырех электронов на р-орбиталях три имеют параллельные спины и один — антипараллельный им. Таким образом, на одной из 2р-орбиталей имеется два спаренных электрона, которые тоже образуют неподеленную пару. Итак, у атома кислорода имеется две неподеленные пары электронов. [c.94]

    Со(1П) образует комплексный ион Со(ЫНз)б . а) Какова геометрия этого иона Пользуясь теорией валентных связей, укажите, какие орбитали Со используются для образования связей с лигандами, б) Дайте номенклатурное название хлоридной соли этого комплексного иона, в) Пользуясь теорией кристаллического поля, схематически изобразите возможные варианты -электронной конфигурации этого иона. Охарактеризуйте каждую конфигурацию как высокоспиновую или низкоспиновую, парамагнитную или диамагнитную. Какие две из этих характеристик применимы к гексамминному комплексу г) Добавление электрона к иону Со(ННз)й приводит к его восстановлению в ион Со(НПз)й . Укажите предпочтительную -электронную конфигурацию для этого восстановленного иона. Почему она является предпочтительной  [c.251]

    Р1(П) образует комплексный ион Р1С14 . а) Какова геометрия этого иона Пользуясь теорией валентных связей, укажите, какие орбитали Р1 используются для образования связей с ионами С1 б) Дайте номенклатурное название натриевой соли этого комплексного иона, в) Пользуясь теорией кристаллического поля, схематически изобразите -электронную конфигурацию данного иона. Парамагнитен или диамагнитен этот ион г) Р1(П) может быть окислена до Р1(1У). Укажите -электронную конфигурацию хлоридного комплексного иона Р1(1У). Объясните различие между этой конфигурацией и конфигурацией хлоридного комплекса Р1(П). Парамагнитен или диамагнитен хлоридный комплекс Р1(1У)  [c.251]

    Теория кристаллического поля объясняет хорошо известный химикам факт, что поны элементов вставных декад окрашены, в то время как ионы, имеюш,ие конфигурацию благородных газов, бесцветны. В ионах -элементов происходит расщепление энергетических уровней валентных электронов в поле лигандов наоборот, воздействие всех лигандов на 5- или р-орбитали одинаково и в этом случае расщепление уровней отсутствует. Становится также понятным, почему ноны Си+ бесцветны, тогда как ионы Си + окрашены ион Си+ имеет конфигурацию ° в нем заполнены все -орбитали, поэтому переходы электронов с одной -орбитали на другую невозможны, у иона Си + ((1 ) одна -орбиталь свободна. По той же причине бесцветны имеющие электронную конфигурацию ионы Ад- -, Zn +, С3 + и [c.124]


    Одной из наиболее ценных идей, которая, по-видимому, должна быть введена в стереохимию вслед за первыми применениями теории валентной связи, является утверждение, что при определении структур молекул соединений непереходных элементов не-тюделенные, или свободные пары электронов так же важны, как и связывающие пары. Однако следует отметить, что при определении стереохимии соединений переходных элементов свободные пары, вероятно, не играют такой же роли, как в случае непереходных элементов. У атомов переходных элементов свободные пары и одиночные неспаренные электроны находятся в предпоследнем п — 1) -подуровне, т., е. на негибридных металлических атомных орбиталях, тогда как у непереходных элементов они расположены на внешнем квантовом уровне, т. е. на гибридных орбиталях. Действительно, октаэдрическая конфигурация комплексов переходных металлов не зависит от числа несвязывающих электронов. Так, ион Мо(СМ)б имеет додекаэдрическую форму несмотря на то, что валентная оболочка атома молибдена содержит девять электронных пар. [c.199]

    Теория отталкивания валентных электронных пар связывает пространственное размещение атомов вокруг центрального атома с числом электронных пар, образовавшихся в валентной оболочке этого атома. При этом принимают во внимание также и неподеленные пары, поэтому в общем виде молекулу записывают как АХпЕт (Е — неподеленная электронная пара, А — центральный атом / —одновалентный лиганд, т. е. атом, связанный с атомом Л). Например, символ АХ2Е2 обозначает молекулу Н2О. Электронные пары в валентной оболочке испытывают взаимное отталкивание и поэтому принимают такую конфигурацию, в которой они максимально удалены друг от друга. Конкретное правило этой теории гласит две электрон- ООО ные пары располагаются линейно, три — направлены к вершинам правильного треугольника, четыре — к вершинам тетраэдра, пять — тригональной бипирамиды, шесть — октаэдра (рис. 5.15). [c.143]

    Тем не менее даже на этом этапе развнтия периодического закона оставался неясным физический смысл явления периодичности, т. е. констатировался сам факт периодического изменения свойств элементов, но не было понятно, почему при монотонном возрастании атомного номера свойства элементов меняются не монотонно, а периодически. И только на третье.м этапе, с развитием квантово-механической теории электронного строения атома, стало возможным вскрыть физический смысл периодического закона. Выяснилось, что сущность периодичности заключается в существовании предельной емкости электронных слоев и в периодическом возобновлении сходных валентных электронных конфигураций на все более высоком энергетическом уровне в результате наложения квантово-механического принципа Паули на классический принцип наименьшей энергии в атомной системе. [c.7]

    В последующих разделах данной главы будет указано, что описание химических соединений как ионных агрегатов является приближением. Электронная структура молекул и кристаллов, обычно описываемая как ионная, сопряжена лишь с частичным переходом электронов от атомов металлов к атомам неметаллов. Тем ие менее рассмотрение ионной валентности в сопоставлении с электронной конфигурацией ар-гоноидов, как это сделано выше, представляет собой важную и полезную часть химической теории. [c.152]

    Теория валентности Льюиса различает два основных типа химической связи ионную и ковалентную. Считают, что причиной образования химической связи является спаривание электронов с образованием стабильных октетов, соответствующих электронной конфигурации благородных газов. Эта идея о спаривании электронов оказала существенное влияние на первые успешные в количественном отношении теории химической связи, которые в сущности и были описанием спаривания электронов на языке волновой механики. Как бз дет видно в дальнейшем, сваривание электронов тесно связано со свойством электрона, которое в 1923 г. было еще неизвестно, а именно с его спином. Прежде чем рассматривать совремепиую точку зрения на развитые Льюисом концепции, необходимо обсудить развитие новых идей в физике в период с 1900 по 1930 г. [c.13]

    Доминируюихая концепция ранних теорий валентности, развитых Льюисом и другими, заключается в том, что при образовании химической связи атомы обмениваются электронами или перераспределяют их с образованием электронных конфигураций, обладающих наибольшей стабильностью или инертностью по отношению к дальнейшим химическим превращениям. Поскольку внешние оболочки атомов всех благородных газов содержат по восемь электронов, наиболее важным критерием стабильности стало правило октетов, предложенное независимо Косселем и Льюисом в 1916 г. Впоследствии Льюис ввел свою концепцию двухэлектронной связи и перенес акцент с правила октетов на правило двух электронов. [c.125]

    При разл. диаметрах сфер (связывающих и неподеленных пар электронов) образуются искаженные конфигурации с валентными углами, отличающимися от нх идеальных значений. Напр., в молекулах СН , NHj и HjO в валентных оболочках атомов С, N и О находятся четыре электронные пары, ио для СН оии все связывающие, а у атомов азота и кислорода имеются соотв. одна н две неподелениые электронные пары. Поэтому идеальную тетраэдрич, конфигурацию имеет лишь молекула СН в молекулах NH3 и HjO валентные углы меньше тетраэдрического. Оценка радиусов электронных сфер и атомных остовов с использованием значений ковалентных и иоиных радиусов атомов, а также постулатов Г. т., касающихся кратных, полярных связей и др., позволяет судить и о длинах связей в молекулах. Г. т. дает результаты качеств, или полуколичеств. характера и применяется гл. обр. в химии иеорг. и координац. соединений. Теория полезна также при рассмотрении фрагментов цепных, слоистых и объемных кристаллич. структур. [c.571]

    Начиная с америция, электронные конфигурации элементов,, по-видимому, подобны конфигурациям лантанидов и вполне отвечают актинидной теории. Из электронных структур и валентных состояний тяжелых элементов вытекают свойства 5/-элект-ронов, отличающиеся от свойств 4/-электронов лантанидов. Энергия связи 5/-электронов мала и сравнима с энергией связи б электронов. Это приводит к тому, что первые элементы ряда — ТЬ, Ра и и могут отдавать все валентные электроны в том числе и 5/-электроны, с образованием устойчивых к восстановлению многозарядных ионов. У следующих за ними элементов энергия связи 5/-электронов все еще остается в пределах энергии химической связи, благодаря чему нептуний, плутоний и америций могут проявлять высокую валентность 6. Даже для кюрия, имеющего сравнительно устойчивую семиэлектронную конфигурацию в 5/-слое, известны четырехвалентные соединения-СтОг и Стр4, образующиеся за счет отщепления одного 5/-электрона. [c.15]

    Атом азота. В основном состоянии атом азота имеет три непарных р-электрона и пару несвязывающих электронов на -орбитали. Его электронная конфигурация 2 2р . В этом валентном состоянии атом азота выступает в большинстве органических соединений как трехвалентный. Три неспаренных р-электрона образуют три ст-связи. Это состояние реализуется в ЫНз, МНгОН, ЫНгКНг и их органических производных. р -Состояние отвечает геометрической структуре тригональной пирамиды с атомом азота в вершине. Валентный угол вследствие расталкивания четырех электронных пар (теория Гиллеспи) превышает 90°, т. е. угол между осями облаков р-электронов  [c.47]

    С ноз[щий электромагнитной теории существующее разделение реакций на химические (горение, реакция нейтрализации, ряд реакций органического и неорганического синтеза и т. п.) и электрохимические (сопровождающиеся электрическими проявлениями), по-видимому, неправомерно. Любая химическая реакция сопровождается электронным обменом (электронной рекомбинацией). При любых химических превращениях разрушаются валентные электронные оболочки исходных компонентов и синтезируются новые валентные электронные конфигурации продуктов реакции. В актах сорбции, кристаллизации, в фазовых переходах и т. п. происходит частпч-пая, а прн химических превращениях полная перестройка коордйнацио[1ных сфер. [c.71]

    Приведенные в таблице структуры обладают высокой симметрией типа правильного треугольника и правильного тетраэдра, но встречается и более низкая V-образная симметрия и симметрия типа треугольной пирамиды. Одмако в последнем случае А имеет неподеленные электронные пары, и если их рассматривать вместе с поделенными парами, обобществленными атомами В и С, то симметрия окружения возрастает. Во всех приведенных в таблице структурах, имеющих симметрию ниже тетраэдрической, вклад d-электронов отсутствует, и их образование можно объяснить с помощью классических теорий валентности Косселя и Льюиса — Ленгмюра. Эти теории основаны иа предположении, что электроны легко обра-зуют конфигурацию благородного газа ns np , восемь электронов дают четыре пары и легче всего ориентируются в направлениях с минимальным взаимным отталкиванием — в направлениях [c.151]

    Подход к металлической связи, основанный исключительно на теории валентных связей, сфрмулирован Полингом [8, 9]. Каждый атом образует гибридные с/зр-орбитали, перекрывание которых приводит к металлической связи. Реальная электронная конфигурация металла возникает в результате резонанса между всеми возможными структурами, причем число [c.15]

    Рассмотрение электронной структуры металлов с точки зрения резонанса валентных связей дается в теории Л. Полинга [181. Согласно этой теории, валентные электроны в металле обобществлены, причем часть электронных орбит участвует в образовании металлических связей, а другая часть ответственна за химические связи с другими веществами. Прочности сцепления атомов в решетке металла способствуют гибридизация орбит и резонанс валентных электронов. Так, электронная конфигурация переходных металлов обусловлена образованием гибридных 5/)-орбит, подразделяемых на атомные d-орбиты, ответственные за магнитные свойства металла и за химическую связь с другими веществами (незаполненные атомные орбиты могут рассматриваться как вакансии в d-зоне), связывающие dsp- и металлические sp-орбиты, ответственные за сцепление атомов металла и его валентность (эти орбиты отвечают полностью занятым уровням в dsp- и sp-зонах). Остаточные валентности на поверхности металла также могут быть частично обусловлены связывающими орбитами. При этом существенное значение имеет вес -состояний в металлической связи, т. е. величина, показывающая, какая доля -орбит участвует в образовании металлической связи. Чем больше вес -состояний, тем меньше вакантных -орбит (или с точки зрения зоршой теории свободных мест в -зоне). [c.57]

    Исследование большого числа осколочных ионов в масс-спектрах слож ных молекул показало, что в большинстве случаев эти ионы образуются лишь с незначительной начальной кинетической энергией или совсем без нее. Этот и другие факты привели Розенстока и его соавторов к заключению, что различные продукты диссоциации не определяются различными электронными состояниями перед диссоциацией. Источником их образования является сильно возбужденный молекулярный ион, состояние которого можно уподобить термическому возбуждению. Они предположили, что в молекулярном ионе с его большим числом межатомных колебаний должен существовать механизм, при помощи которого некоторая слабая точка может перемещаться в молекуле диссоциация наступает тогда, когда электронная конфигурация позволяет сделать это. Другими словами, допускается, что молекулярный ион (или любой другой ион, образовавшийся из него) может перераспределить свою энергию между различными колебательными уровнями путем ряда быстрых нерадиационных переходов к различным электронным состояниям. Для осуществления этого необходимо наличие большого количества пересекающихся поверхностей потенциальной энергии. В классическом случае молекулы пропана, впервые рассмотренной с точки зрения статистической теории, в молекулярном ионе имеется 19 валентных электронов. Из 2 состояний, соответствующих этим электронам в основных состояниях, многие являются вырожденными число невырожденных состояний равно [c.253]

    Как раз перед первой мировой войной Льюис установил, что старые правила валентности могут быть выведены из электронной теории валентности. Существенными чертами этой теории была констатация необычно устойчивой электронной конфигурации инертных газов, пршщипы образования электронных пар и обобщения их двумя ядрами. Эти понятия были использованы в первых четырех главах при описании строения органических молекул. Для того чтобы понять поведение органических соединений, необходимо более глубокое описание, к которому мы теперь и переходим. [c.101]

    Прямоугольная молекула является самым крайним членом ряда изогнутых конфигураций, подвергнутых тщательному исследованию. Хотя класс симметрии этой молекулы был бы таким жО как и для любой другой изогнутой конфигурации, строение с углом 90° между С — Н-связями кажется естественным с точки зрения простой теории валентности. В самом деле, связывающие орбиты можно было бы построить из двух 2р-орбит атома углерода, а неподеленную пару электронов поместить на 25-орбиту углерода, причем одна 2р-орбита осталась бы незанятой. Слейтер [3] вычислил, что энергия, требуемая для промотирования электрона с -орбиты на вакантную р-орбиту в атоме углерода, составляет 199 ккал/моль. Поэтому даже нри условии, что метод расчета может допускать некоторую ошибку и что введение двух атомов водорода может слегка изменить величину электрон-электронного отталкивания, все же приходится сделать вывод, что прямоугольный СНг был бы синглетным и что для возбуждения в прямоугольное триплетное состояние потребовалась бы большая энергия. При раннем обсуждении этой проблемы [4, 5] идея, что домини- [c.270]

    С точки зрения развития теории химических связей в гиперполимерах представляют интерес квантовомеханические расчеты и рентгеноспектральные исследования плотности электронных состояний в алмазе. Они существенны для определения энергетических характеристик зонной структуры алмаза. В частности, согласно рентгеновским данным [371], валентная зона в алмазе имеет ширину 21—23 эВ, запрещенная зона — 5—7, зона проводимости — 10—12 эВ, Дно валентной зоны расположено на уровне L-слоя свободного атома (табл. 13). Последнее можно объяснить изменением заселенности сферическн-симметричных s-состояний при сближении атомов углерода и образовании а-связей. В электронной структуре это приводит к возрастанию плотности сферически-несимметричных электронных состояний и перераспределению электронов между s- и /7-оболочками, Указанные изменения способствуют образованию хр -гибридизации (см, главу III), существующей в узлах трехмерных ковалентных сеток (ТКС) алмаза. При этом 5 0 -гибридизация возникает, как правило, не сразу, а через промежуточную электронную конфигурацию, которая реализуется на поверхности алмазной грани. [c.51]

    Теория валентности Льюиса. Опубликованная Джольбертом Льюисом в январе 1916 г. теория валентности имеет с теорией Косселя, опубликованной в конце декабря 1915 г., общий принцип, а именно причиной образования химических соединений является особая стабильность электронных конфигураций, существующих в инертных газах. Однако Льюис в противоположность Косселю выдвигает в своих рассуждениях на первый план гомеополярные соединения. В соответствии с этим он принимает, что отличающиеся особой стабильностью электронные конфигурации возникают не только благодаря полному переходу электронов от одного атома к другому, но очень часто также благодаря тому, что атомы, участвующие в образовании химического соединения, 1шею/ г общие электроны. [c.154]

    Основные свойства элементов главной подгруппы пятой группы удовлетворительно объясняются на основе теории валентности. Наивысшая положительная валентность (нятивалентность) элементов с порядковыми номерами 7, 15, 33, 51 и 83 следует, по теории Косселя, из того, что каждый из них содержит,на пять электронов больше по сравнению с особенно устойчивыми конфигурациями в 2, 10, 28, 46 и 78 электронов (см. рис. 28 на стр. 152). Трехвалентностъ элементов главной подгруппы пятой группы по отношению к электроположительным элементам, например к водороду, также объясняется стремлением их приобрести особенно устойчивые электронные конфигурации, а именно такие, которые имеются у инертных газов, стоящих в перйодической системе после элементов главной подгруппы пятой группы. [c.632]


Смотреть страницы где упоминается термин Электронная конфигурация теория валентности: [c.609]    [c.51]    [c.413]    [c.413]    [c.6]    [c.227]    [c.135]    [c.27]    [c.571]    [c.154]    [c.227]    [c.135]    [c.162]   
Общая химия (1964) -- [ c.198 ]




ПОИСК





Смотрите так же термины и статьи:

Валентность теория

Валентные электроны

Теория электронная

Теория электронов

Электрон конфигурации

Электронная конфигурация

Электроны валентные электроны



© 2025 chem21.info Реклама на сайте