Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Медь, свойства

    Один и тот же центр может выполнять несколько функций, в частности таким свойством обладают анионные центры, участвующие не только в анионном обмене, но в адсорбции и электронном обмене. Работа некоторых катионных центров связана с изменением валентности катиона (например, Си+ч= Си +), и это позволяет им активно участвовать в процессах адсорбции и электронного обмена по окислительно-восстановительному механизму [5]. Наибольшей каталитической активностью обладают соли металлов переменной валентности (кобальта, марганца, железа, никеля, хрома, серебра, меди), действующие по описанному механизму (см. гл. 2). [c.196]


    При волочении и прокате металла существует реальная возможность слипания и повреждения поверхностей. И в этом случае, как и при обработке металлов резанием, очень важно, чтобы смазывающее вещество образовывало пленку между штампом и обрабатываемой деталью. В смазочно-охлаждающие эмульсии, применяемые нри обработке мета.чла, зачастую для сообщения им специфических свойств вводят различные добавки твердых материалов известь, мыльный порошок, тальк, порошкообразный графит, металл (медь) [112—115]. [c.506]

    Механические свойства чугуна значительно улучшаются в результате обработки его во время плавки модифицирующими присадками. Присадки в значительной степени улучшают структуру чугуна, размельчая и распределяя графит равномерно по объему отливки. Полученный в результате такой обработки модифицированный чугун используют главным образом для изготовления ответственных деталей, например корпусов насосов, арматуры и др. Добавки хрома, меди, никеля, молибдена значительно улучшают качество чугуна. [c.17]

    Образование осадков [5.24, 5.55, 5.64]. Очистка сточных вод данным методом заключается в связывании катиона или аниона, подлежащего удалению, в труднорастворимые или слабодиссоции-рованные соединения. Выбор реагента для извлечения аниона, условия проведения процесса зависят от вида соединений, их концентрации и свойств. Очистка сточных вод от ионов цинка, хрома, меди, кадмия, свинца в соответствии с санитарными нормами возможна при получении гидроксидов этих металлов. Более глубокая очистка воды от иона цинка достигается при получении сульфида цинка. Очистка от ионов ртути, мышьяка,- железа также возможна в виде сульфидов ртути, мышьяка и железа. Использование в качестве реагента солей кальция позволяет провести очистку сточных вод от цинк- и фосфорсодержащих соединений. В результате очистки получается суспензия, содержащая труднорастворимые соли, отделение которых возможно методами отстаивания, фильтрации и центрифугирования. [c.492]

    Пассивированные металлы имеют иные химические и электрохимические свойства, чем металлы в обычном, активном состоянии. Пассивное железо не вытесняет медь из растворов ее [c.635]

    Вследствие высокой стоимости платины часто приходится вместо платиновых электродов применять электроды из менее ценных металлов или сплавов. Однако анод всегда делают из платины, так как в процессе электролиза анод из других металлов может растворяться. Следует все же заметить, что найти равноценный платине по свойствам материал для электродов до сих пор не удалось. Электроды из меди сравнительно легко окисляются кислородом воздуха, что сопряжено с изменением их массы и понижением точности определения. [c.422]


    Акрилонитрил — прозрачная жидкость с дурманящим запахом, которая легко полимеризуется. Для стабилизации вводят олеат меди, диоксифенил и другие ингибиторы. Акрилонитрил очень ядовит. Ниже приведены его свойства  [c.133]

    Важнейшее химическое свойство оснований — способность образовывать соли с кислотами. Наиример, при взаимодействии перечисленных оснований с соляной кислотой получаются хлористые соли соответствующих металлов —. хлориды натрия или меди  [c.41]

    Из меди и ее сплавов с цинком (латуни) изготовляют холодильники газодувок и газовых компрессоров, уплотнения крышек и фланцевых соединений аппаратов высокого давления, блоки разделения газовых смесей и воздуха методом глубокого охлаждения и другое оборудование, не имеющее соприкосновения с аммиаком. Аммиак, взаимодействуя с медью и ее сплавами, образует сложные комплексные соединения. При этом полностью изменяются физические свойства металлов и может нарушиться герметичность оборудования. Кроме того, прн высоких температурах в газовой среде восстановительные газы (водород, окись углерода и углеводороды) вызывают хрупкость окисленной меди. [c.94]

    Свойства некоторых, солей меди. Свойства солей, образуемых медью с галогенами, приведены ниже. [c.83]

    Приблизительно в 1735 г. шведский химик Георг Брандт (1694— 1768) начал изучать голубоватый минерал, напоминавший медную руду. Несмотря на такое сходство, получить из этого минерала медь при обычной обработке не удавалось. Рудокопы полагали, что эта руда заколдована земными духами кобольдами . В 1742— 1744 гг. Брандт сумел показать, что голубоватый минерал содержит не медь, а совершенно иной металл, напоминающ,ий по своим химическим свойствам железо. Этот металл получи %название кобальт. [c.43]

    Прн взаимодействии ацетилена с водными растворами солей меди, серебра и ртути образуются осадки соответствующих ацети-ленидов металлов, характеризующиеся взрывчатыми свойствами. Ацетилен, содержащий влагу и аммиак, при длительном контакте с красной медью может реагировать с ней с образованием ацети-ленидов меди. При соприкосновении с серебром ацетилен способен образовывать взрывчатое ацетиленистое серебро. Содержание меди в материале аппаратуры, запорной арматуры, приборов и других устройств, применяемы-х в производстве ацетилена, не должно превышать 70%. [c.23]

    Трименяемые в производстве ацетилен, ксилол и образующиеся в процессе реакции ацетальдегид, моно- и дивинилацетилен характеризуются опасными свойствами. Дивинилацетилен и его растворы окисляются с образованием легко взрывающихся пере-кисных соединений. Поскольку катализатор димеризации содержит медь, возможно образование внутри системы нестойких, разлагающихся со взрывом ацетиленидов меди. [c.62]

    Следует иметь в виду, что по мере углубления отбора солярового дестиллата при вакуумной перегонке мазута коксуемость дестиллата увеличивается кроме того, в нем повьппается концентрация соединений, понижающих активность катализатора (соединения железа, никеля, ванадия и меди, содержащиеся- в незначительных количествах в нефтях и в выделяемых из них соляровых дестиллатах). Загрязняя катализатор, эти металлы оказывают неблагоприятное влияние на его свойства. С увеличением загрязнения катализатора примесями уменьшается выход бензина и повышаются выход кокса и количество водорода в газах крекинга. [c.28]

    Медь. Из нее изготовляют теплообменники, емкостные аппараты, ректификационные колонны. Для химической аппаратуры применяют в основном медь марок М2 и М3 с содержанием соответственно 99,7 и 99,5% чистой меди. Медные аппараты исполь- зуют в химической, пищевой и фармацевтической промышленности. Прочность меди прп низких температурах повышается, и при этом сохраняются ее пластические свойства, поэтому она является ценным конструкционным материалом в криогенной технике. Медные листы легко вальцуются, штампуются и гнутся. В настоящее время освоена электродуговая и газовая сварка меди. [c.20]

    Нефтяные парафины, в общем, хуже по свойствам, чем природные воски, с точки зрения применения их в политурах. Для меди- [c.531]

    Испытания трансформаторных масел, помимо побочных показателей (температура вспышки и застывания, вязкость, диэлектрические свойства [112] и т. д.), включают в себя ускоренную пробу на окисление с целью определить вероятный срок эксплуатации масла. Для проведения этой пробы был предложен целый ряд методов [113—115]. Почти все они предусматривают нагревание масла в воздухе или кислороде при температуре около 120° обычно в присутствии меди в качестве катализатора окисления. При этом наблюдается изменение цвета, поверхностного натяжения [116, 117], кислотности, коэффициента мош,ности, образование осадка и воды [118—123]. [c.567]

    При расс.мотрении химических свойств ацетилена бы ла отмечена его высокая реакционная способность особенно по отношению к меди и медным сплавам, с коп- [c.108]

    Поскольку концентрация активного комплекса составляет лишь малую долю от концентрации исходных веществ, даже ничтожное количество катализатора часто меняет кинетические свойства системы. Например, для заметного изменения скорости окисления сернистокислого натрия в водном растворе достаточно Ю- г-экв катализатора (сернокислой меди) на 1 л раствора. [c.272]


    Особую опасность представляет высокая агрессивность аммиака, воздействующего на медь, серебро, цинк и другие металлы и сплавы. Чугун и сталь наиболее пригодны в качестве материалов для изготовления оборудования и трубопроводов, предназначенных для аммиака. Однако безводный аммиак оказывает сильное коррозионное воздействие на стальные трубопроводы в присутствии двуокиси углерода и воздуха. Для предотвращения коррозионного растрескивания углеродистой стали сжиженный аммиак, транспортируемый по трубопроводам, должен содержать не менее 0,2% (масс.) воды. При меньщем содержании воды в аммиаке в присутствии воздуха возможно коррозионное растрескивание. Для транспортирования сжиженного аммиака применяют трубы, химический состав которых соответствует определенным требованиям. Трубы для аммиакопровода должны изготовляться по специальным техническим условиям, в которых помимо химического состава должны быть оговорены требования к механическим свойствам металла и сварке, допускам толщин стенок, диаметров труб и т. д. [c.35]

    Медь — Свойства 1.91 Метод анализа мета.члосодержащсго компонента в электролитах весовой 2.73, 75 [c.238]

    Медь является ценным конструкционным материалом и согласно ГОСТу 859-41 выпускается в технически чистом виде пяти марок, из которых для конструирования химической аппаратуры применяются две марки М2 и М3 с содержанием соответственно 99,7 и 99,5°с чистой меди. Свойства меди характеризуются следующими данными у = 8,9 кг/дм , теплоели ость с = 0,093 ккал кг °С, температура плавления = 1083° С, теплопроводность к = = 334 ккал м С час, линейный коэффициент температурного расширения а = 1,65-10 модуль Юнга Е = 1 080 000 кг см , температура литья 1150° С, удельное сопротивление q = 0,017 ом-мм /м. [c.39]

    Monoplex S-90 — пластификатор для изоляционных материалов и для снижения вязкости пластизолей и винильных смол. Композиции устойчивы до 105° стойки к действию микроорганизмов при добавке 0,5% бис-фенола А как антиоксиданта имеет высокое сопротивление старению хорошо совмещается не оказывает корродирующего действия на медь. Свойства уд. вес 1,005 (25°) вязкость Е — G (по Гарднеру - Хольдту 25 ) Лд 1,4514 т. затверд. — 55 кислотное число макс. 0,2. (886) [c.146]

    Интенсивность образования "дегидрогенизационного" кокса определяется содержанием и типом отлагающегося на катализаторе метахла сырья. Наибольший выход этого типа кокса обеспечивают коба ьт, никель, медь и в меньшей степени ванадий, молибден, хром и железо. Интенсивность образования кокса, помимо свойств ка — тали штора и химического состава сырья, определяется также кинетическими параметрами технологического процесса. [c.123]

    Мнение о превосходстве свойств меди как материала для стенок ввиду значительной теплопроводности меди не всегда я вляется о правданным, как это явствует из следующего примера. [c.156]

    Маловязкие рабоче-консервационные масла общего назначения выпускают в Англии по спецификации S. 31118, а в США — по федеральной спецификации VV-L-800A [22]. Масла содержат про-тивоизносную, антиокислительную, депрессорную, загущающую и защитную присадки. Их основные достоинства — высокие защитные и водовытесняющие свойства, благодаря которым масла надежно защищают черные и цветные металлы от электрохимической коррозии, в частности в зоне контакта стали с медью. Хорошие низкотемпературные свойства и высокая термоокислительная ста-бильно сть обеспечивают возможность применения масел в интервале температур от —57 до 150 °С. [c.113]

    Оонозными причинами ненормального старения являются 1) дей твие на катализатор некоторых газов при высокой темпера-туре — аммиака, сернистого газа и особенно сероводорода 2) влияние на свойства катализатора ряда сернистых соединений, особенно тех, из которых в условиях каталитического крекинга образуются сероводород и сернистый газ 3) накопление на катализаторе окислов металлов (железа, меди, никеля, ванадия, натрия и др.), содержащихся в виде примесей в сырье 4) действие на катализатор высокой температуры и водяного пара при высокой температуре. [c.52]

    Определение содержания меркаптановой серы основано на свойстве меркаптанов, находящихся в топливе, взаимодействовать с аммиачным раствором сернокислой меди, образуя меркаптиды меди. [c.186]

    Четвертый ряд также начинается со щелочного металла — калия. Судя по тому, как изменялись свойства в двух предыдущих рядах, можно было бы ожидать, что н здесь они будут изменяться в той же последовательности и седьмым элементом в ряду будет опять галоген, а восьмым — благородный газ. Однако этого ие наблюдается. Вместо галогена на седьмом месте находится марганец— металл, образующий как основные, так и кислотные оксиды, из которых лишь высший МпгОт аналогичен соответствующему оксиду хлора С12О7). После марганца в том же ряду стоят еще три металла — железо, кобальт и никель, очень сходные друг с другом. И только следующий, пятый ряд, начинающийся с меди, заканчивается благородным газом криптоном. Шестой ряд снова начинается со щелочного металла рубидия и т. д. Таким образом, у элементов, следующих за аргоном, более или менее полное поч вторение свойств наблюдается только через восемнадцать элементов, а не через восемь, как было во втором и третьем рядах. Эти восемнадчать элементов образуют четвертый — так называемый большой период, состоящий из двух рядов. [c.50]

    Металлы проявля.ют в своих соединениях только положительную окисленность, и низшая их степень окислещгости равна нулю. Иначе говоря, низшей степенью окисленности они обладают только в свободном состоянии. Действительно, все свободные металлы способны, хотя и в различной степени, проявлять только восстановительные свойства, Иа практике в качестве восстановителей применяют алюминий, магний, натрнй. калий, цинк и некоторые другие металлы. Если металлу присущи несколько степеней окисленности, то те его соединения, в которых он проявляет низшую нз них, также обычно являются восстановителями, например, соеди[ ения железа (И), олова (П), хрома (И), меди(1). [c.270]

    Медь, железо, олово и многие другие мегу, л1,. сгорают в хлоре, обрпзуя соответствующие соли. Подобным же образом вза 1мод й ствуют с металлами бром н иод. Во всех этих случаях атомы металла отдают электроны, т. е. окисляются, а атомы галогенов присоединяют электроны, т. е. восстанавливаются. Эта способность присоединять электроны, резко выраженная у атомов галогенов, является их характерным химическим свойством. Следовательно, галогены — очень энергичные окислители. [c.355]

    Менее распространенным является меди о аммиачный способ, при котором используется характерное свойство целлюлозы — ее способность растворяться в аммиачном растворе оксида меди (П) [ u(NHj)4 (OH)2 (реактнк Швейцера). Из этого раствора действием кислот вновь выделяют целлюлозу. Ни волокна получают продавливанивм медноаммиачпого раствора сквозь фильеры в осадительную ванну с раствором кислоты. [c.496]


Смотреть страницы где упоминается термин Медь, свойства: [c.298]    [c.240]    [c.86]    [c.197]    [c.48]    [c.30]    [c.33]    [c.61]    [c.231]    [c.176]    [c.83]    [c.42]    [c.224]   
Химия (1986) -- [ c.384 ]

Химия (1979) -- [ c.399 ]

Электроосаждение металлических покрытий (1985) -- [ c.73 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимосвязь технологических параметров процесса со свойствами отложений меди и их структурой

Груздева, А. С. Адамова. Коррозионные и механические свойства сплавов цирконий — медь — олово

Груздева, Т. Н. Загорская, И. И. Раевский. Влияние малых добавок меди, никеля и хрома на коррозионные и механические свойства сплавов системы цирконий — железо — ниобий

Иванов. Жаростойкость и механические свойства сплавов цирконий — медь — никель

Калинина, В. М. Лякушина. Каталитические свойства соединений платиновых элементов в реакции окисления толлурата меди (И) пиюбромптом

Меди окись, окислительные свойств

Меди перхлораты получение и свойства

Меди фториды получение и свойства

Медь А каталитические свойства

Медь Сплавы свойства механические при низких

Медь и ее сплавы свойства

Медь и сплавы механические свойства

Медь как катализатор свойства

Медь мышьяковистая, механические физические свойства

Медь основные свойства

Медь свойства механические при низких температурах

Медь также Сплавы медные свойства

Медь также сплавы медные свойства теплопроводность

Медь также сплавы медные свойства теплопроводность при низких температурах

Медь физические свойства

Медь, адсорбция газов свойства пленок

Медь, амальгама свойства

Медь, ее влияние на спектральные свойства белков

Медь, закись оптические свойства

Медь, закись электрические свойства

Медь, окись каталитические свойства

Медь, окись электрические свойства

Медь, свойства Менделеева периодический

Медь, свойства Металлическая решетка

Медь, свойства закон

Медь, свойства объемноцентрированная

Медь, соли, каталитические свойства

Медь, соли, каталитические свойства скелетная, каталитические свойства

Механические свойства некоторых конструкционных сталей, меди, алюминия и их сплавов при низких температурах

О некоторых свойствах гидрида меди

Окислительные свойства иона меди

Опыт 2. Восстановительные свойства меди

Опыт 4. Получение гидроокиси меди и исследование ее свойств

Подгруппа меди Медь. Серебро. Фотографический процесс. Золото. Химические свойства золота

Получение и свойства гидроксида меди

Получение и свойства гидроокиси меди

Пятницкий, И. А. Трегубое. Влияние железа, никеля и хрома на коррозионную стойкость и механические свойства сплавов системы цирконий — медь — молибден

Пятницкий, И. А. Трегубое. Циркониевый угол диаграммы состояния и свойства сплавов системы цирконий — медь — молибден

Свойства и применение кадмиевых Покрытия медью и ее-сила- покрытий

Свойства меди, серебра и золота

Свойства меди, серебра и золота . 21.3. Соединения меди

Свойства церулоплазмина, обусловленные присутствием в нем меди

Сплавы никеля с медью, механические свойства плотность

Структура и некоторые свойства меди

Сурьма, влияние ее содержания меди с цинком на свойства

Физико-механические и технологические свойства меди

Физико-химические свойства нитрата меди

Физические и химические свойства элементов подгруппы меди

Фталоцианин меди свойства

Хлористая медь термодинамические свойства



© 2025 chem21.info Реклама на сайте