Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель, свойства

    При построении периодической системы Менделеев руководствовался принципом расположения элементов по возрастающим атомным массам. Однако, как видно нз таблицы, в трех случаях этот принцип оказался нарушенным. Так, аргон (атомная масса 39,948 а. е. м.) стоит до калия (39,098 а. е. м.), кобальт (58,9332 а. е. м.) находится до никеля (58,70 а. е. м.) и теллур (127,60 а. е. м.) до иода (126,9045 а. е. м.). Здесь Менделеев отступил от принятого им порядка, исходя из свойств этих элементов, требовавших именно такой последовательности их расположения. Таким образом, он не придавал исключительного значения атомной массе и, устанавливая место элемента в таблице, руководствовался всей совокупностью его свойств. Позднейшие исследования показали, что произведенное Менделеевым размещение элементов в пе- [c.52]


    Один и тот же центр может выполнять несколько функций, в частности таким свойством обладают анионные центры, участвующие не только в анионном обмене, но в адсорбции и электронном обмене. Работа некоторых катионных центров связана с изменением валентности катиона (например, Си+ч= Си +), и это позволяет им активно участвовать в процессах адсорбции и электронного обмена по окислительно-восстановительному механизму [5]. Наибольшей каталитической активностью обладают соли металлов переменной валентности (кобальта, марганца, железа, никеля, хрома, серебра, меди), действующие по описанному механизму (см. гл. 2). [c.196]

    Осадок диметилглиоксимата никеля обладает весьма ценными для анализа свойствами. Так, он весьма мало растворим в воде (ПР = 2,3-10"25), концентрация Ni + в его насыщенном растворе составляет около 4 10 г-ион/л. Избыток осадителя еще больше понижает эту и без того весьма малую растворимость осадка. Далее, весьма ценно, что осадок получается достаточно чистым. Наконец, реакция довольно специфична. Из других катионов малорастворимые осадки с диметилглиоксимом дают только палладий и платина, которые редко встречаются при обычных анализах. Все это делает диметилглиоксим наиболее ценным осадителем Ni +-ионов. [c.188]

    Наряду с тонкой очисткой газа от сероводорода и других сернистых соединений на цеолитах происходит также глубокая осушка газа. Цеолиты обладают высокой адсорбционной емкостью и селективностью по отношению к сероводороду. Для очистки больших количеств газа (до 200 000 м /ч) с низким содержанием сероводорода в качестве адсорбентов используют также активные угли. При этом степень извлечения сероводорода может достигать 99,5%. Сорбционные свойства углей могут быть повышены введением в их состав оксидов некоторых металлов млди, железа, никеля, марганца, кобальта. [c.52]

    СПЛАВЫ ЦИНК — НИКЕЛЬ Свойства и применение [c.205]

    Для многих нефтей наблюдается взаимозависимость между содержанием серы (Сз), азота (См ), асфальтенов и смол (С са) тяжелых металлов (ванадия и никеля Су+м1) и рядом физико-химических свойств — плотностью, вязкостью и молекулярной массой (рис. 1-16) [25] . [c.38]

    По мере заполнения п—1) d-орбиталей вторым электроном усиливается сходство соседних d-элементов по периоду. Так, никель проявляет большое сходство как с Со и Fe, так и с Си. Кроме того, [-.следствие лантаноидного сжатия особая близость свойств наблюдается у диад Ru—Os, Rh—Ir и Pd—Pt. Поэтому эти элементы 5-го п 6-го периодов часто объединяют в семейство так называемых платиновых металлов. [c.580]

    Близкие по химическим свойствам и размерам атомов никель, кобальт, железо и марганец образуют друг с другом непрерывный ряд твердых растворов. В ряду Сг — V — Т1 по мере увеличения различий в химических свойствах растворимость металлов в никеле падает. Кальций и калий, которые резко отличаются от никеля по свойствам и атомным размерам, твердых растворов с ним практически не образуют. [c.254]


    Четвертый ряд также начинается со щелочного металла — калия. Судя по тому, как изменялись свойства в двух предыдущих рядах, можно было бы ожидать, что н здесь они будут изменяться в той же последовательности и седьмым элементом в ряду будет опять галоген, а восьмым — благородный газ. Однако этого ие наблюдается. Вместо галогена на седьмом месте находится марганец— металл, образующий как основные, так и кислотные оксиды, из которых лишь высший МпгОт аналогичен соответствующему оксиду хлора С12О7). После марганца в том же ряду стоят еще три металла — железо, кобальт и никель, очень сходные друг с другом. И только следующий, пятый ряд, начинающийся с меди, заканчивается благородным газом криптоном. Шестой ряд снова начинается со щелочного металла рубидия и т. д. Таким образом, у элементов, следующих за аргоном, более или менее полное поч вторение свойств наблюдается только через восемнадцать элементов, а не через восемь, как было во втором и третьем рядах. Эти восемнадчать элементов образуют четвертый — так называемый большой период, состоящий из двух рядов. [c.50]

    NI зРе—N i зМп—N i зСг—N1 зУ—N i дТ I—NI зА1. Интерметаллические соединения никеля часто отличаются высокой жаростойкостью и жаропрочностью, являются основой ряда конструкционных материалов для ракетной, газотурбинной и атомной техники. Интерметаллиды входят в состав сплавов никеля, придавая им ценные физико-химические и механические свойства. [c.608]

    Исследования ряда авторов показали, что нанесением никеля, кобальта, палладия и платины на носители, обладающие кислотными свойствами, можно синтезировать катализаторы изомеризации парафиновых углеводородов [36]. В наших исследованиях была изучена реакция изомеризации парафиновых углеводородов на алюмоплатиновых и алюмо-палладиевых катализаторах, промотированных фтором. Было показано, что платиновые катализаторы отличаются большой устойчивостью к действию ядов (сернистых и азотистых соединений) и лучшей регенерационной способностью (табл. 2.6). На основании проведенной работы в качестве металлического компонента катализатора была рекомендована платина. [c.52]

    Механические свойства чугуна значительно улучшаются в результате обработки его во время плавки модифицирующими присадками. Присадки в значительной степени улучшают структуру чугуна, размельчая и распределяя графит равномерно по объему отливки. Полученный в результате такой обработки модифицированный чугун используют главным образом для изготовления ответственных деталей, например корпусов насосов, арматуры и др. Добавки хрома, меди, никеля, молибдена значительно улучшают качество чугуна. [c.17]

    Какие свойства диметилглиоксимата никеля делают его весьма це((ным для количественного определения иона Ni -  [c.192]

    В циклогексановом ряду конфигурационная изомеризация изучена особенно широко. Скорость достижения термодинамического равновесия в ряду гомологов циклогексана зависит от природы и активности катализаторов, условий проведения реакции и свойств исходных изомеров. Так, Ватерман и сотр. показали [28], что цис-и транс-, 3- и 1,4-диметилциклогексаны в присутствии катализатора Ni/кизельгур при 170—180°С и давлении водорода (7—8)-10 Па быстрее достигают термодинамического равновесия, чем 1,2-диметил-циклогексаны. Под действием скелетного никеля транс-1,2-диметил-циклогексан быстрее достигает равновесия, чем соответствующий цис-изомер. Аллинджеру с сотр. принадлежит серия работ [29—34], посвященных конформационному анализу стереоизомерных гомологов циклогексана, которые с помощью конфигурационной изомеризации в присутствии Pd-катализатора обратимо превращаются друг в друга. Состав термодинамически равновесных смесей, образующихся при этом, позволил авторам рассчитать константы равновесия, значения ряда термодинамических функций, а также энергий взаимных переходов различных конформеров. [c.76]

    Как уже указывалось, образованию твердых растворов благоприятствуют близость химических свойств, атомных радиусов и типов кристаллической структуры исходных веществ (с. 134). Несоблюдение одного из этих условий приводит к тому, что твердые растворы между компонентами образуются лишь в ограниченных пределах концентраций или же не образуются вообще. Например, предельная растворимость ряда металлов в никеле г =0,124 нм) выражается в виде следующего ряда  [c.254]

    Среди металлов рассматриваемой группы, которые можно получить в дисперсном виде (обычно на носителях) путем восстановления их соединений, т. е. главным образом никеля, кобальта, железа и рения, наиболее полно изучен никель, свойства которого можно считать типичными для всех указанных металлов. [c.327]

    А п t i g е п е NPX —изопропилксантогенат никеля. Свойства порошок т. пл. >110°. [c.39]

    В это же время Штаудингер и Фрич гидрировали каучук в присутствии платиновой черни, в отсутствии растворителя, под давлением 93— 102 ат, при температурах 270—280° в течение 10 час. Никель действует так же, как и платина, но гидрирование идет не столь быстро и полно. Полученный ими гидрокаучук представлял бесцветную, прозрачную, твердую массу он не обладал эластическими свойствами исходного каучука и имел химические свойства насыщенных углеводородов. При пиролизе гидрированного каучука образовались олефины, из которых [c.218]


    Анализ стали труб печей с огневым нагревом после длительного пробега показал значительное снижение содержания в ней хрома и никеля и образование сложных карбидов хрома. Такие изменения в структуре ухудшают свойства сталей, снижают их прочность и пластичность. О местном перегреве свидетельствует более светлый оттенок нагретых труб, имеющих при нормальном обогреве темно-вишневый цвет. [c.134]

    В двухступенчатом процессе получения водорода паровой конверсией бензина применяют два разных последовательно расположенных катализатора (по одному на каждой ступени). Первый (по ходу реагентов) катализатор содержит небольшое количество никеля (менее 5%), нанесенного на прокаленную при высокой температуре окись алюминия. Второй катализатор, объем которого составляет 80% от общей загрузки, содержит в пять раз больше никеля, чем первый. В этот катализатор введено также до 0,5% окислов щелочных металлов. В качестве носителя этого катализатора используют материал, не обладающий кислотными свойствами (спеченный корунд, окись алюминия). [c.45]

    Интенсивность образования "дегидрогенизационного" кокса определяется содержанием и типом отлагающегося на катализаторе метахла сырья. Наибольший выход этого типа кокса обеспечивают коба ьт, никель, медь и в меньшей степени ванадий, молибден, хром и железо. Интенсивность образования кокса, помимо свойств ка — тали штора и химического состава сырья, определяется также кинетическими параметрами технологического процесса. [c.123]

    Следует иметь в виду, что по мере углубления отбора солярового дестиллата при вакуумной перегонке мазута коксуемость дестиллата увеличивается кроме того, в нем повьппается концентрация соединений, понижающих активность катализатора (соединения железа, никеля, ванадия и меди, содержащиеся- в незначительных количествах в нефтях и в выделяемых из них соляровых дестиллатах). Загрязняя катализатор, эти металлы оказывают неблагоприятное влияние на его свойства. С увеличением загрязнения катализатора примесями уменьшается выход бензина и повышаются выход кокса и количество водорода в газах крекинга. [c.28]

    Холатные комплексы более устойчивы, чем аналогичные комплексы с похожими по свойствам моподентантными лигандами. Например, этнлендиамн-новый комплекс никеля (II) устойчивее, чем аналогичный аммиакатный, более чем в 10 раз  [c.187]

    Можно работать нри значительно более низких давлениях, если использовать в качестве катализатора алкилалюминий в смеси с тетрахлорэтаном [266, 267], окисью хрома на носителе [268— 270], никелем или кобальтом на древесном угле [271] или промо-тированным молибдатом алюминия [272]. При этом полимеры имеют более линейную структуру. Подобным образом может быть получен и полипропилен. Из этилено-нропиленовых и этилено-бутеновых смесей можно получить высокомолекулярные сополимеры с хорошей эластичностью. Полиэтилен представляет интерес прежде всего с точки зрения его отличных электроизоляционных свойств его химическая стойкость, легкость обработки, легкий вес и большая упругость дают возможность его применения для многих других целей. [c.581]

    В качестве примера приведены данные, полученные при изучешш распределения металлов в остатках вьиие 480, 540 и 590 °С товарной смеси западносибирских нефтей (рис. 1.17) [17]. Выходы основных групп компонентов бьши приведены в табл. 1.8, По мере утяжеления остатков общий вид распределения ванадия практически не изменяется, лишь в остатках выше 540 и 590 °С отмечено повышение содержания ванадия в группах средней и тяжелой ареновой части. Для никеля отмечены значительные изменения по, мере утяжеления остатков. Так при отборе фракций до 540 °С никель практически равномерно распределяется между асфальтенами и смолами. При утяжелении остатка до 590 °С наибольшая концентрация никеля обнаруживается в смолах I. Такая миграция никельсодержащих компонентов свидетельствуют о перераспределении компонентов, происходящих в структурных единицах остатков по мере удаления дистиллятных фракций. Факт появления в составе группы аренов тяжелых остатков ванадий- и никельсодержащих соединений свидетельствует о повышении диспергирующих свойств дисперсионной среды масел, ввиду повышения концентрации лио-фильных аренов. В целом данные рис, 1,17 хорошо согласуются с дан- [c.43]

    Однако из всего многообразия изучешхых систем в конечном итоге отдается предпочтение в настоящее время значительно меньшему числу элементов и их сочетанию - это кобальт, никель, молибден, реже вольфрам, платина, ванадий, железо. Выбор подобных элементов определяется многими факторами, положительно характеризующими их мак с позиций их электронной структуры, так и свойств их солей и соединений, определяющих и технологичность операций создания катализатора, и применимость в практике созданной каталитической системы. Итак, круг элементов, используемых в синтезе катализатора гидрообессеривания нефтяных остатков, значительно сузился. [c.94]

    Вредным действием на антидетонационные свойства тетраэтилсвинца обладают не только сернистые соединения [253]. Эффективность введения таких антидетонаторов, как ТЭС, карбонилы железа и никеля, соединения олова снижается, если в составе топлива имеются некоторые определенные вещества. [c.426]

    Никель, кобальт, платина или палладий придают катализато — рам дегидро —гидрирующие свойства, но они не обладают устойчивостью по отношению к отравляющему действию контактных ядов и не могут быть использованы в отдельности в гидрогениза — I,ионных процессах. [c.208]

    Оонозными причинами ненормального старения являются 1) дей твие на катализатор некоторых газов при высокой темпера-туре — аммиака, сернистого газа и особенно сероводорода 2) влияние на свойства катализатора ряда сернистых соединений, особенно тех, из которых в условиях каталитического крекинга образуются сероводород и сернистый газ 3) накопление на катализаторе окислов металлов (железа, меди, никеля, ванадия, натрия и др.), содержащихся в виде примесей в сырье 4) действие на катализатор высокой температуры и водяного пара при высокой температуре. [c.52]

    Иногда путем гидрогенизации возможно разделять сложные близкокипящие углеводородные смеси, так как гидрированные компоненты значительно отличаются по своим свойствам от негидрированных, чем и пользуются для разделения их при помощи физических или химических методов. Цапример, антраценовую лепешку (побочный продукт, выделяемый из каменноугольной смолы, содержащий антрацен, фенантрен, карбазол и другие полициклические углеводороды) можно так прогидри-ровать, что прогидрируется только антрацен. Продукт гидрогенизации антрацена 9,10-дигидроантрацен можно выделить из смсси перегонкой либо избирательной экстракцией. Подходящими условиями для этого процесса являются температура 300°, давление водорода 42 ат, катализатор сульфид никеля или сульфид молибдена [30]. [c.243]

    Известны работы [52, 103,104,105], в которых изучалось распределение углерода по грануле закоксованиого катализатора. Так [105], было показано, что в зоне накопления металлов (ванадия, никеля) содержание углерода минимальное. По данным [52] углерод равномерно распределяется по зерну катализатора. По данным [103] при гидрогениза-циоииой переработке остатков кокс отлагается преимущественно в зоне наружного слоя гранулы катализатора. Такие несогласующиеся результаты могут быть объяснены различием свойств используемых катализаторов и перерабатываемого сырья, длительностью проведенного эксперимента. [c.122]

    Жаропрочные стали, обладающие одновременно свойствами теплоустойчивости и окалиносто1 1кости. Эти стали легируют в основном хромом и молибденом хромом и никелем хромом, ванадием и вольфрамом. [c.16]

    При гидрогенизационной переработке тяжелых фракций нефтей на поверхности катализаторов накапливаются различные металлы, ухудшающие каталитические свойства. К их числу относятся, прежде всего, ванадий, никель и железо. Эти металлы определяют фотоколори-метричеоким методом. [c.127]

    Сравнение физических и химических свойств элементов восьмой группы показывает, что железо, кобальт и никель, находящиеся в первом большом периоде, очень сходиэ1 между собой и в то же время сильно отличаются от элементов днух других триад. Поэтому их обычно выделяют в семейство железа. Остальные шесть элемериов восьмой группы объединяются под общим названием платиновых металлов. [c.670]

    Н пкель. Он обладает хорошими литейными свойствами, легко куется и штампуется. Его сваривают никелевыми электродами в атмос(1)ере инертного газа. Аппаратуру из никеля применяют для процессов щелочного плавления, при переработке органических кислот, а также в тех случаях, когда требуется высокая чистота продукта или недопустимо применение кислотостойких сталей пследствпе нх действия как катализатора, ускоряющего ход нежелательных реакций. Никель — очень дефицитный металл, и для химической аппаратуры как самостоятельный конструкционный материал он применяется редко. [c.21]


Смотреть страницы где упоминается термин Никель, свойства: [c.661]    [c.239]    [c.239]    [c.39]    [c.30]    [c.61]    [c.102]    [c.203]    [c.219]    [c.148]    [c.609]    [c.648]   
Химия (1986) -- [ c.366 ]

Химия (1979) -- [ c.381 ]




ПОИСК





Смотрите так же термины и статьи:

Агрессивные среды свойства никеля

Влияние никель-фосфорных покрытий на прочностные свойства стали

Влияние температуры на защитные свойства никель-фосфорных покрытий

Г е й д е р и х. Термодинамические свойства фаз со структурой типа арсенида никеля

Груздева, А. С. Адамова. Влияние железа, никеля и хрома на коррозионные и механические свойства сплавов цирконий — молибден — ниобий и цирконий — мель — олово

Груздева, Т. Н. Загорская, И. И. Раевский. Влияние малых добавок меди, никеля и хрома на коррозионные и механические свойства сплавов системы цирконий — железо — ниобий

Защитные свойства никель-фосфорных покрытий

Защитные свойства никель-фосфорных покрытий при высокой температуре

Защитные свойства никель-фосфорных покрытий разных толщин

Иванов. Жаростойкость и механические свойства сплавов цирконий — медь — никель

Износостойкость и антифрикционные свойства никель-фосфорных покрытий

Колотыркин, Г.М. Флорианович Взаимосвязь коррозионно-электрохимических свойств железа, хрома и никеля и их двойных и тройных сплавов

Лапшина. О гидрирующих и дегидрирующих свойствах катализаторов, полученных разложением формиата никеля

Магнитные свойства железа, кобальта и никеля

Некоторые свойства никель-фосфорных покрытий в газовых средах при высоких температурах

Никель Свойства покрытий

Никель гидрат окиси, получение и свойства

Никель двуфтористый, получение и свойства III

Никель и его сплавы свойства

Никель каталитические свойства

Никель кислотно-основные свойства

Никель магнитные свойства

Никель на носителях каталитические свойства

Никель на носителях магнитные свойства

Никель прокатанный, механические свойств

Никель состав и свойства

Никель физические свойства

Никель химические свойства

Никель, адсорбция газов магнитные свойства

Никель, адсорбция газов свойства пленки

Никель, закись каталитические свойства

Никель, закись магнитные свойства

Никель, осажденный методом восстановления механические свойства

Никель, сульфид каталитические свойства

Никеля фторид получение и свойства

Опыт 2. Получение и свойства окислов кобальта и никеля

Опыт 3. Получение гидрозакисей кобальта и никеля и их свойства

Опыт 3. Получение и свойства гидратов закиси кобальта и никеля

Получение и свойства гидроокисей кобальта(П) и никеля(П)

Пятницкий, И. А. Трегубое. Влияние железа, никеля и хрома на коррозионную стойкость и механические свойства сплавов системы цирконий — медь — молибден

Результаты исследований защитных свойств никель-фосфорных покрытий

Свойства железа, кобальта и никеля

Свойства и методы получения ДКМ на основе никеля

Свойства и методы получения псевдосплавов на основе никеля

Свойства и применение карбонильных порошков на основе железа и никеля

Свойства никель-фосфорных покрытий

Состав, структура и свойства никель-фосфорных покрытий

Сплавы жаропрочные иа основе кобальта и никеля свойства фаз

Сплавы никеля с медью, механические свойства плотность

Структура и механические свойства электролитического никеля

Твердость и антифрикционные свойства никель-фосфорных покрытий

Физико-механические и технологические свойства никеля

Физические и химические свойства карбонилов и гидрокарбонилов железа, кобальта и никеля

Хлористый никель термодинамические свойства

Электронные свойства закиси никеля

Электрохимические свойства никеля

физические свойства с никелем коррозионная стойкость в различных средах

физические свойства с никелем, коррозия в атмосфере И в жидких



© 2025 chem21.info Реклама на сайте