Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волокно требования к исходным полимерам

    Полиамиды, сложные полиэфиры и полиуретаны являются превосходными синтетическими волокнообразующими полимерами некоторые из них находят промышленное применение. Наряду с этими полимерами имеются и некоторые другие типы конденсационных полимеров, химическое строение которых обусловливает их способность к волокнообразованию. Карозерс и его сотрудники в своих капитальных исследованиях в области высокомолекулярных линейных полимеров разработали синтез большого числа полимеров конденсационного типа. Некоторые из них, как показал Хилл [1], обладают волокнообразующими свойствами. После этих работ значительно возрос научный и технический интерес к волокнообразующим конденсационным полимерам, что вызвало интенсивное развитие исследований в этой области. Как будет показано ниже, полиамиды, сложные полиэфиры и полиуретаны—далеко не единственные вещества, способные давать волокна. Применяя методы органического синтеза, можно получить многочисленные разнообразные полимеры, обладающие удовлетворительными волокнообразующими свойствами необходимо лишь правильно подобрать исходные компоненты и довести реакцию поликондепсации до образования продуктов с достаточно высоким молекулярным весом. Однако, не говоря уже об ограничениях, обусловленных требованиями к физикомеханическим свойствам конечных продуктов, получение многих из этих продуктов является экономически невыгодным. Действительно, ни один из волокнообразующих конденсационных полимеров, рассматриваемых в настоящей статье, не производится в промышленном масштабе. Однако исследование этих полимеров способствует развитию науки о синтетических волокнах. На их примере подтверждаются основы теории волокнообразующих полимеров, разработанные за последние двадцать лет. Еще раз было показано, что факторами, влияющими на волокнообразующие свойства полимеров, являются их температура плавления, пространственная конфигурация макромолекул, способность к кристаллизации и ориентации, взаимодействие цепей и их жесткость. Правда, сколько-нибудь подробно предсказывать свойства волокна на основе данных о химическом строении пока еще не представляется возможным. [c.161]


    К исходному сырью производства полиэфирных волокон предъявляют очень высокие требования. Во всех случаях содержание основного вещества не должно быть ниже 99,95%. Особо нежелательными примесями являются альдегиды, хлор- и азотсодержащие вещества, железо и реакционноспособные монофункциональные соединения. В присутствии альдегидов и соединений железа образуется сильно окрашенный полимер. В присутствии монофункциональных соединений нельзя ожидать получения высокомолекулярного полимера вследствие блокирования молекулами этих соединений растущих цепей. Применение недостаточно очищенных сырьевых продуктов может привести к нарушению процесса производства волокна на заключительных стадиях (например, при ориентации нитей и волокон), когда даже оперативные меры уже не смогут обеспечить получение качественного волокна. [c.14]

    Промышленность синтетических полимеров и пластических масс характеризуется большим разнообразием технологических процессов, определяемых природой исходных веществ — мономеров, методами их превращения в полимеры и требованиями к полимерам. Эти процессы непрерывно совершенствуются, осваиваются новые производства с прогрессивной технологией и современными методами управления. Быстрыми темпами развивается также промышленность переработки высокомолекулярных соединений в пластмассы, волокна, пленки и другие материалы. [c.4]

    Главное требование к волокнообразующему полимеру заключается в том, что длина его вытянутой молекулы должна быть не менее 1000А (100 нм), т. е. его молекулярный вес должен быть не ниже 10 000. Эта величина, разумеется, может быть и выше например, молекулярный вес необработанной (не-деструктированной) хлопковой целлюлозы достигает 500000. В случае синтетических волокон молекулярный вес исходного полимера намеренно ограничивают, поскольку прядильный раствор или расплав должен иметь не слишком высокую вязкость. У большинства волокон, сформованных из расплава, молекулярный вес составляет 10 000—20 000. Волокна, получаемые формованием из раствора, могут иметь более высокий молекулярный вес. Для текстильных волокон характерна также определенная степень кристалличности и (или) ориентации молекул вдоль оси волокна. Эти свойства, присущие природным волокнам, придаются искусственным и синтетическим волокнам в процессе их формования, вытягивания и термической обработки. Точность соблюдения параметров этих процессов оказывает существенное влияние на физико-механические и отчасти на химические свойства готового волокна. В свою очередь, регулярная структура волокна возможна лишь при определенной степени регулярности строения макромолекул, достаточной для их плотной упаковки, которая необходима для возникновения сильных меж-цепных взаимодействий (за счет водородных связей, ассоциации диполей или сил вандерваальсова притяжения). Однако при слишком высокой степени крист алличности волокно не только становится очень прочным, но и делается слишком жестким и теряет способность растягиваться в процессе его получения и эксплуатации. Кроме того, такое волокно чрезвычайно трудно окрасить, поскольку реакционноспособные группы почти целиком находятся в неупорядоченных участках. Степень кристалличности наиболее прочных синтетических волокон, по-видимому, не превышает 50—60%. Исключение составляют полиакрилонитрильные волокна, которые обнаруживают мало признаков истинной кристалличности, но вместе с тем обладают высокой однородностью структуры по всему сечению волокна. В неупорядоченных участках силы межцепного взаимодействия [c.284]


    В настоящее время в различных отраслях народного хозяйства применяются волокна с особыми свойствами. Хотя потребление этих волокон пока невелико, но значение их возрастает с каждым годом. Стоимость исходного полимера в этом сдучае практически роли не играет Зато к химическому строению и свойствам полимера, применяемого для производства специальных волокон, предъявляются чаще всего особые, иногда совершенно необычные требования. [c.26]

    Первое требование очевидно, ибо иначе в результате плавления полимера теряется волокнистая форма и получается монолитная масса. Так как в процессе карбонизации происходит термическая деструкция, приводящая к изменению химического состава полимера, не должно плавиться не только исходное волокно, но и промежуточные продукты превращения, особенно те из них, которые образуются на ранних стадиях термического распада полимера. Возможность применения плавящихся волокон не исключается, но тогда необходима предварительная обработка, после которой полимер становится неплавким. Обычно полимер окисляют, в результате чего образуются межмолекулярные химические связи, т. е. осуществляется переход от линейной к сетчатой структуре при этом полимер теряет способность плавиться. [c.15]

    Приведенные выше три основных требования, которым должны удовлетворять исходные волокна, являются сугубо феноменологическими. Сформулировать научно обоснованные требования к исходным волокнам на данном этапе физико-химических исследований термодеструкции полимеров не представляется возможным. Процессы термодеструкции полимеров и переходные формы углерода слишком сложны и многообразны, поэтому мол<но только качественно характеризовать переход от органических к углеродным волокнам. [c.15]

    Исходя из основных требований к волокнообразующим полимерам (достаточно высокий молекулярный вес, монолитность и отсутствие продуктов окисления), технологический процесс получения смолы анид должен обеспечить достаточное постоянство соотношения исходных компонентов (гексаметилендиамина и адипиновой кислоты) в процессе реакции, достаточно полное удаление воды, выделяющейся в процессе реакции, отсутствие термической деструкции полимера и полную изоляцию реакционной массы от воздействия кислорода воздуха. Некоторые потери легколетучего компонента соли АГ (гексаметилендиамина) в процессе поликонденсации или недостаточно полное удаление реакционной воды обусловливают получение полимера с недостаточно высоким молекулярным весом. Такой полимер может оказаться непригодным для переработки в волокно. Воздействие кислорода воздуха приводит к окислительной деструкции, а завышение температуры — к термической деструкции полимера, вызывая его пожелтение и насыщение пузырьками газообразных продуктов разложения. Такой полимер тоже непригоден для получения волокон. [c.74]

    Для получения синтетических волокон используются разнообразные синтетические высокомолекулярные соединения, удовлетворяющие приведенным выше требованиям. Из природных полимеров в качестве исходного сырья для производства искусственных волокон почти монопольное применение получила целлюлоза, выделяемая из хлопка-сырца или из древесины (стр. 650). Хлопковая целлюлоза однороднее, чем древесная, и содержит меньше примесей. Для химической переработки используется коротковолокнистый хлопок (так называемый хлопковый пух), остающийся на коробочке хлопчатника после снятия длинного хлопкового волокна, непосредственно перерабатываемого в текстильной промышленности. [c.667]

    К ионообменным волокна.м предъявляют ряд достаточно жестких требований в отношении механических свойств, химической устойчивости и обменной емкости по этой причине получение их связано без сомнения с большими трудностяд1и, чем, например, получение мембран, и в особенности гранулированных материалов, у которых в процессе сульфирования полностью утрачиваются текстильные свойства (если исходные полимеры таковыми обладают). [c.87]

    Получение исходного материала (полупродукта). Для синтетических волокон это синтез полимеров — получение смолы. При всем разнообразии исходных полимерных материалов к ним предъявляются следующие общие требования, обеспечивающие возможность формования волокна и достаточную прочность его а) линейное строение молекул,позволяющее растворять или плавить-исходный материал для формования волокна и ориентировать молекулы в волокне б) ограниченная молекулярная масса (обычно от 15000 до 100 000), так как при малой величине молекулы не достигается прочность волокна, а при слишком большой возникают трудности при формовании волокна из-за малой подвижности молекул в) полимер должен бЕлть чистым, так как примеси, как правило, сильно понижают прочность волокна. [c.208]


    Полиамиды — хорошо изученный класс синтетических полимеров, широко используемый для мпоготоннажного производства волокон различного назначения. При выборе полимера учитываются не только такие показатели, как точки перехода (плавления, стеклования, хрупкости), сорбционные свойства (главным образом влагопоглош епие и пакрашива-емость) и кристаллизуемость, но преимуш,ественно экономические факторы (доступность исходного сырья, сложность проведения процесса поликонденсации и т. п.). При этом необходимо учитывать требования различных потребителей. Так, например, требования текстильной и кордной промышленности на полиамидное волокно несколько различаются, что заставляет более детально сопоставлять свойства волокон капрон и анид. [c.58]


Смотреть страницы где упоминается термин Волокно требования к исходным полимерам: [c.106]   
Основы химии и технологии химических волокон Том 1 (копия) (1964) -- [ c.31 ]




ПОИСК







© 2025 chem21.info Реклама на сайте