Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярная биология ограниченная

    Понятно, что первые исследователи были приведены в замешательство открытием, каких размеров может достигать полипептид-ная цепь в некоторых белках, согласно оценкам их молекулярной массы. Некоторые авторы [3] пришли к заключению, что имеющаяся конфигурация действует таким образом, что помогает молекуле гораздо сильней уплотниться, чем это можно было ожидать на основании простейших и наиболее очевидных предположений . Большие успехи в исследовании биополимеров, таких как белки н нуклеиновые кислоты, а также становление молекулярной биологии в значительной степени произошли в результате понимания того факта, что такие ограничения, накладываемые на форму и размер частиц, действительно существуют. Определение точной пространственной структуры белков с помощью кристаллографической техники и в ряде случаев исследования, которые показали дискретные изменения в конформации белков, когда они вступали в [c.219]


    Фракционирование сложных смесей веществ является одним из основных этапов в решении многочисленных проблем биохимии, биофизики и молекулярной биологии, в связи с тем что биологические системы содержат большое число компонентов, часто близких по ряду химических и физических свойств, а также в связи с развитием методов изучения первичной структуры биополимеров. Выделение отдельных компонентов из таких систем является, как правило, весьма сложной экспериментальной задачей, решение которой ранее осуществлялось путем использования физико-химических методов — осаждения, кристаллизации и сорбции. В настоящее время имеется большой арсенал средств избирательного выделения компонентов или разделения сложных смесей с получением всех веществ в чистом виде. К ним относятся в области изучения биополимеров и их фрагментов прежде всего хроматография и электрофорез. Для аналитических целей при рассмотрении систем, содержащих ограниченное число компонентов, успешно применяется также седиментация, диффузия и ряд других процессов, в которых осуществляется обычно не полное разделение компонентов, а относительное смещение границ зон отдельных веществ. [c.6]

    Изучение тонкой структуры генетической карты фага Т4, несмотря на ограниченность метода (мы не знаем белков, к которьш относятся цистроны А и В, и потому лишены возможности сопоставлять изменения в молекуле ДНК с изменениями в программируемом ею белке), дало для молекулярной биологии неоценимый экспериментальный материал. [c.381]

    Для того чтобы дать объяснение особенностям мутантного /s-фенотипа на молекулярной основе, необходимо уточнить фундаментальный принцип молекулярной биологии, введенный в гл. IV и состоящий в том, что первичная структура белка полностью определяет вторичную, третичную и четвертичную структуры. Это уточнение заключается в том, что определенная вторичная, третичная и четвертичная структуры, образуемые полипептидной цепью с определенной первичной структурой, зависят от внешних условий, особенно от температуры. Так, функционально активная третичная и четвертичная структура каждого белка возникает в довольно строго ограниченном физиологическом интервале температур, а за пределами этого интервала белок переходит в нефункциональную, денатурированную форму. Первичная структура белков, кодируемая генами дикого типа, такова, что их функционально активные структуры высших порядков образуются в интервале температур от 25 до 42 "С. Однако изменение последовательности нуклеотидов в гене, несущем /s-мутацию, ведет к такому изменению первичной структуры полипептида, при котором мутантный белок, хотя и сохраняет способность образовывать функционально активные структуры высшего порядка при [c.284]


    Естествознание во второй половине XX в. развивалось в двух направлениях. С одной стороны, все более углублялось понимание элементарных процессов путем редукционизма, проявившееся в области биологии в формировании молекулярной биологии и молекулярной генетики, но, с другой стороны, росло сознание необходимости интегративного подхода, поскольку игнорирование системных закономерностей прямо угрожает существованию как всего человечества в целом, так и отдельных государств и наций. Эмоциональной причиной этого широко обсуждаемого изменения в приоритетах, обозначаемого как смена парадигмы, стало всеобщее осознание ограниченности земного пространства, обусловленное развитием воздушного транспорта и возможностью наблюдения Земли из космоса. Рост в ограниченном пространстве ведет к исчерпанию ресурсов и гибели популяции подобно тому, как это происходит в культуре микроорганизмов. Особенно быстро исчерпание ресурсов происходит в связи с экспоненциальным ростом, который создает впечатление порогового перехода. На основе этих представлений были разработаны математические модели, претендовавшие на прогностическое значение и, во всяком случае, сумевшие определить порядок приоритетов. [c.5]

    Итак, подход к изучению биосистем "от сложного к простому" или "от морфологии к физиологии", единственный в течение целого ряда столетий, стимулировавший и определявший направление развития биологии и приведший во второй половине XX в. науку о живой природе к поражающим воображение достижениям в области структуры и функции низших биосистем, к настоящему моменту, достигнув апогея, в значительной мере исчерпал свой идейный потенциал. Из этого отнюдь не следует, что данный подход стал менее актуален ему, синтезирующему в себе экспериментальную, эмпирическую и феноменологическую формы научного познания, не грозит отойти в прошлое. Оставаясь по-прежнему необходимым, он начинает терять свою определяющую роль в эволюции биологии, постановке и решении ее принципиально новых проблем. Все ощутимее проявляется его ограниченность, все более становится очевидно, что наличие одних только экспериментальных данных, эмпирических соотношений и феноменологических описаний, как бы многочисленны и уникальны не были первые, безупречно не выглядели вторые и убедительными не казались третьи, недостаточно для качественного продвижения вперед в познании сущности живого. При использовании только существующего подхода и, следовательно, продолжении экстенсивного развития молекулярной биологии путем накопления новых фактов и даже открытий новых явлений разрыв между знанием и пониманием будет иметь тенденцию к увеличению. [c.136]

    Вывод о том, что белки представляют собой случайные аминокислотные последовательности и не требуют эволюционного отбора, обосновывается тем обстоятельством, что усреднение по первичным структурам белков практически не дает статистически достоверных отличий от случайного распределения аминокислотных остатков и их групп вдоль цепи. Это главный и по существу единственный аргумент Птицына для отрицания отмеченного выше фундаментального положения молекулярной биологии. Необходимо, однако, сказать, что обоснование сделанного вывода не вполне корректно, поскольку заключение о характере распределения остатков следует из анализа ограниченного экспериментального материала, что не дает права распространять его на все белки. Но это не главное. Даже если в усредненной первичной структуре распределение действительно не отличается от случайного, то отсюда еще не следует, что случайна последовательность каждого конкретного белка. О том, что усредненные характеристики белков не имеют ясного физического смысла, уже говорилось. Сказанное можно дополнительно проиллюстрировать данными табл. 11.9, в которой приведено содержание некоторых аминокислотных 286 [c.286]

    Каждый вид животных по-разному сочетает две эти противоположные тенденции, и это различие между видами отражается в строении и функциях разных органов, включая и нервную систему. Как специалисты в области нейробиологии мы должны в принципе интересоваться нервной организацией во всех ее проявлениях и у самых разных видов животных. Однако на практике интересы ученых оказываются гораздо более узкими. Например, эколог может интересоваться в основном насекомыми или рыбами, специалист в области молекулярной биологии — используемым в качестве объекта круглым червем, а ученый, связанный с медициной, — человеком. У начинающего нейробиолога может возникнуть ощущение, что при изучении одного лишь вида животных сложностей встречается и так достаточно — что уж тут говорить об изучении многих других видов. Кроме того, при изучении любого вида животных выявляются общие принципы, которые в определенной степени применимы к большинству или ко всем остальным видам. Однако животные одного определенного вида демонстрируют только одно из решений упомянутых выше проблем дифференциации и интеграции поэтому, ограничившись изучением только одного или нескольких видов животных, мы неизбежно достигнем лишь ограниченного знания соответствующих механизмов и их поведенческой значимости. [c.35]

    Вне зависимости от того, какая из двух обсуждавшихся выше концепций дизайна биотехнологических процессов будет преобладать в будущем, одним из основных вопросов белкой инженерии, по-видимому, останется вопрос о пределе совершенства идеального биокатализатора. Прежде всего необходимо выяснить, какие факторы лимитируют функции известной белковой молекулы, а поняв это потребуется найти способы преодоления таких ограничений. Рациональный дизайн белков развивается медленно из-за сложности объекта исследований. Пока не удалось даже установить основные закономерности, определяющие термостабильность белковых молекул для того, чтобы сознательно изменять это свойство в нужном направлении. В то же время методы направленной эволюции белков в последнее время быстро распространяются и находят все большее применение, поскольку по своей сути не требуют от исследователя предварительных знаний о структурно-функциональных отношениях в эволюционирующих макромолекулах. Прогресс в понимании структурно-функциональных взаимосвязей в белковых молекулах определит популярность рационального дизайна белков. А поскольку открытия в науке предсказать невозможно, делать прогнозы о ближайшем будущем развитии таких мощных направлений молекулярной биологии и генетики как генная и белковая инженерия - дело неблагодарное. [c.462]


    Уникальными возможностями обладает метод нейтронографии, успешно применяемый для исследования твердых тел и жидкостей, веществ с близкими и достаточно далекими атомными номерами, а также соединений, содержащих изотопы одного и того же вещества. По угловому распределению интенсивности рассеяния медленных нейтронов впервые удалось определить пространственное расположение атомов водорода и длины водородных связей в обычной и тяжелой воде, обнаружить наличие ближайшего ориентационного порядка, существующего в этих жидкостях наряду с ближним координационным порядком. Опыты по неупругому рассеянию медленных нейтронов продемонстрировали коллективный характер теплового движения атомов и молекул в жидкостях, подтвердили теоретические предсказания Л. Д. Ландау о существовании в жидком гелии квазичастиц двух типов фононов и ротонов. В настоящее время эти дифракционные методы являются составной частью физики твердого тела, физического материаловедения, молекулярной физики, биофизики и биологии. Они взаимно дополняют друг друга, имеют свою специфику, преимущества и ограничения, связанные с различием физических свойств рентгеновского излучения, электронов и нейтронов. На современном этапе при проведении структурных исследований используется новейшая аппаратура и вычислительная техника. Помимо навыков работы с ними от специалиста требуется знание теории рассеяния, основ статистической и атомной физики, природы сил взаимодействия атомов и молекул. [c.6]

    Для того чтобы полнее отразить основные взаимосвязи, мы сосредоточили главное внимание на физиологии бактерий. Понимание молекулярных взаимодействий делает биологию более простой и легче обозримой. Многочисленные внешние проявления жизни и биохимические процессы удается свести к неким общим причинам, к ограниченному числу элементарных структур и процессов, а также типов строения и метаболизма. В свою очередь знание этих последних позволяет установить определенные эвристические принципы, полезные и для описательного подхода. Таким образом, проникновение в глубину способствует и большей широте охвата изучаемых проблем. [c.8]

    Наша главная задача состояла в том, чтобы раскрыть сущность и глубину экспериментальных подходов науки, которая бьша названа молекулярной генетикой, применительно к эукариотическим организмам. Чтобы решить эту задачу, а также облегчить понимание материала читателями, обладающими ограниченным объемом знаний по биохимии, клеточной биологии и генетике, мы постарались изложить основы этих направлений биологии двумя способами. Во-первых, в гл. 1, 2 и 3 суммирована наиболее важная информация о структуре ДНК, РНК и белков о различных клеточных процессах, протекающих с участием ДНК (репликация, репарация и рекомбинация) об основных механизмах транскрипции, трансляции и контроле экспрессии генов. Читатели, хорошо ориентирующиеся в данных вопросах, могут пропустить эти главы. Во-вторых, во введениях к частям I, II и III даны исторические экскурсы и общий взгляд на проблемы, изложенные в главах, составляющих эти части. В них не говорится детально о том, как были открыты и доказаны те или иные положения, а делается попытка объяснить, как на основе различных исследований в области биохимии, генетики, микробиологии, клеточной и эволюционной биологии бьш выстроен интеллектуальный каркас современной биологии. Так, во введении, предваряющем гл. 1, 2 и 3, прослеживается исторический путь, приведший нас к современному взгляду на наследственность. Мы знакомимся с концепцией гена, трансмиссией и сегрегацией генов, с логическим переходом от первичного картирования генетических детерминант к точной локализации генов на хромосоме, с идентификацией генов как дискретных участков молекулы дезоксирибонуклеиновой кислоты и информационными взаимоотношениями между ДНК, РНК и белками. [c.6]

    Актиномицины являются мощными ингибиторами ДНК-зависи-мого синтеза РНК, т. е. ступени транскрипции в биосинтезе белка см. схему (1) и служат мощным биохимическим средством. Актиномицин D нашел также ограниченное применение в клинике для лечения некоторых видов опухолей. Его действие включает образование высокоустойчивых комплексов с ДНК, что препятствует этой кислоте проявлять свое биологическое действие. В связи о этим были приложены значительные усилия по исследованию конформаций этих молекул как в кристаллическом состоянии, так и в растворе [115, 150]. Общепринятая схема взаимодействия двойной спирали ДНК с актиномицином основана на данных рентгеноструктурного исследования кристаллического комплекса, содержащего актиномицин и дезоксигуанозин (рис. 23.4.3) [151]. По этой схеме феноксазоновый хромофор внедряется между соседними парами оснований G- ДНК, где остатки гуанина принадлежат различным цепям ДНК, и две аминогруппы остатков гуанина образуют специфические водородные связи с обоими циклическими пептидами, находящимися в узком желобе спирали. Эта модель согласуется с известными данными и представляет собой важное достижение в молекулярной биологии. [c.325]

    При оценке возможностей нейрохимии прежде всего необходима осторожность. За последние четверть века несомненные успехи молекулярной биологии настолько повысили самонадеянность биохимиков, что некоторые из них уверовали в возможность разрешить биохимическими методами или на молекулярном уровне буквально все загадки живой природы. Так, при изучении механизма наследственности делались попытки рассматривать мозг человека как еще одну молекулярную головоломку. По мере того как решались основные проблемы молекулярной генетики и все меньше возможностей оставалось для новых фундаментальных открытий, ведущие специалисты в области молекулярной биологии стали сосредоточивать свои интересы на нейробиологии. Здесь, однако, молекулярный подход имеет ограничения. Я не хочу выступать в роли защитника некоего неовитализма, но описание ограничений и возможностей вейрохимии может стать, по-моему, хорошим способом дать определение этой научной дисциплины, а сопоставление молекулярной генетики с молекулярной биологией прекрасно это иллюстрирует. [c.7]

    Поскольку рак - результат серии случайных генетических событий, вряд ли найдутся хотя бы лве опухоли лаже одного вида, которые были бы генетически идентичны. Несмотря на это, можно ожидать, что при любой форме рака нарушаются нормальные ограничения пролиферации клеток, и для каждого типа клеток существует определенное число возможных способов реализации подобного нарушения. Более того, некоторые элементы механизма, регулирующего клеточное деление, но-видимому, одинаковы во многих или даже во всех тинах клеток, и одинаково уязвимы Фактически основной вклад в нарушение регуляции деления клеток при раке вносит относительно небольшое число генов. Идентификация и характеристика многих из них - одно из крупнейших достижений молекулярной биологии за последнее десятилетие Пролиферация клеток может регулироваться непосредственно - через механизм, заставляющий клетку начинать очередной цикл деления (см. разд. 13.3.2), или косвенно -например, через регуляцию встунления клетки на путь терминальной дифференцировки (см. разд 17.4.1). В обоих случаях нормальные регуляторные гены можно разделить на две катего- [c.465]

    В ответ на беспокойство, обусловленное представлением об ограниченности экологических ресурсов, в которые попадало общечеловеческое достояние, была разработана отражавшая идеологию системного анализа международная геосферно-биосферная программа, целью которой стало, по сути, возрождение естествознания как науки, изучающей именно природу, а не понятие окружающей среды или среды обитания . Системный подход потребовал иных подходов и приоритетов, чем молекулярная биология, генетика, идеология выживания наиболее приспособленных. Возникло множество морально-философских рассуждений на тему экология , включая экологию сознания , полностью вытеснивших первоначальный биологический смысл понятия и заменивших его [c.5]

    Второй этап исследования — это введение ДНК в ту или иную систему транскрипции. Простейшей системой являются экстракты, приготовленные из клеток или из изолированных ядер, способные инициировать и вести транскрипцию. Однако уровень транскрипции в них невысок, и часто эффекты, выявляемые in vivo, с экстрактами наблюдать не удается. Другой подход включает инъекцию ДНК в ядра крупных клеток, например овоцитов лягушки (М. Бирнстил, Швейцария) или вьюна (М. Я. Тимофеева, Институт молекулярной биологии АН СССР). Введенная ДНК одевается белками и далее может активно транскрибироваться в овоцитах. Недостатком системы является ее гетерологичность, так как обычно работают с генами из других организмов, и ограниченность. Третья широко используемая система — это временная экспрессия при [c.69]

    Генетическая инженерия с момента зарождения привлекла внимание ученых и широких кругов общественности потенциальной опасностью некоторых исследований. Это опасение бы. о высказано в 1974 году, вскоре после первых успешных экспериментов по получению рекомбинантных молекул ДНК методом in vitro. Группа известных молекулярных биологов во главе с П. Бергом призвала ученых к ограничению проведения ряда генно-инженерных экспериментов. Характер высказанных опасений был двоякого рода. Прежде всего указывалось на реальную возможность утечки клеток с рекомбинантными молекулами ДНК за пределы лаборатории или промышленных производств и, следовательно, угрозы внесения в организм человека или животных вредных чужеродных либо собственных продуктов (например, гормонов), но в неконтролируемых концентрациях. А это, естественно, может привести к негативным последствиям, которые трудно предсказать. Во-вторых, отсутствие достаточных знаний о структуре и функциях генов, находящихся в клонируемом фрагменте ДНК, может привести к тому, что при внесении их в реципиентные клетки они начнут синтезировать не только желаемое вещество, но и какие-либо опасные продукты (токсины, продукты онкогенов и т. п.). [c.473]

    Молекулярная биология далеко продвинулась в изучении физикохимической природы паследствеппости, и модели классической генетики относятся уже ко второму типу (феноменологическая модель). Тем не менее, они и по сей день составляют азы современной генетики - с них начинается ее изучение. Но не только азы, еще и основы. Многие положения генетики строятся так сначала предлагаются простейшие модели, как если бы они точно соответствовали реальности потом, пользуясь ими как идеальной картиной, формулируются многочисленные уточнения и исключения. Наконец, с некоторого момента эти простые модели могут уже не рассматриваться вовсе или применяться в качестве очень приближенной схемы. Но дороге может быть высказано немало ложных ( ограниченно верных ) утверждений, которые уточняются позднее. [c.101]

    Однако для тех, кто близко соприкасается с вышеперечисленными отраслями биологических знаний, граница проходит мевду немногочисленной, но глубоко изученной группой микроорганизмов, служаш,их модельными объектами при исследованиях фундаментальных жизненных процессов, и всеми остальными микроорганизмами, которые, как правило, генетиками, молекулярными биологами и генными инженерами не изучались совсем или изучались в очень ограниченной степени. К числу первых относятся кишечная палочка (Е. соН), сенная палочка Вас. subtilis) и пекарские дрожжи S. erevisiae). [c.17]

    Целью настоящего учебника является последовательное изложение основ теории и расчетных методов квантовой химии Упор делается на изложении лищь тех вопросов, которые получили в настоящее время широкое применение в практике физикохимиков, химиков, биологов и других специалистов, работающих с обьектами молекулярного мира Основное внимание уделяется физическим основам методов квантовой химии и разъяснению смысла вводимых при расчетах понятий С целью знакомства в ограниченных пределах с математическим аппаратом теории, авторы сочли необходимым конспективно изложить математическую сторону вопроса Чтобы сделать чтение понятным, изложению этого материала предшествует краткое математическое введение Разъясняются также некоторые основные понятия квантовой механики [c.7]

    В свете современного развития науки стало очевидным истинное содержание так называемой антиэнтропийности жизни. Ранее подчеркивалась высокая упорядоченность клетки организма. Но упорядочены и кристаллы. Антиэнтропийность , если уж пользоваться этим понятием, выражается в ограниченной применимости понятия энтропии (и соответственно эквивалентного понятия количества информации) к живой системе. Будучи динамической, машинной , а не статистической системой, живой организм следует, конечно, законам термодинамики, но должен описываться в иных терминах. Развитию организма отвечают очень малые изменения энтропии. Для информационной трактовки явлений жизнедеятельности понятие о количестве информации бесплодно. В биологии существенно не количество, а качество информации, ее программирующее значение, ее ценность. Так, в теории Эйгена в качестве характеристики, определяющей молекулярную селекцию и эволюцию, фигурирует селективная ценность, выражаемая через кинетические величины. [c.611]

    Можно предположить, что роль такого механизма играет клеточный цикл. Однако факты не нодтвержают это нредноложение дифференцировка ранних эмбриональных клеток следует установленной схеме и при искусственном ограничении клеточных делений под влиянием химических веществ, ингибирующих цитокинез или синтез ДНК. Клеточные деления не следует уподоблять периоду колебаний маятника биохимических часов, определяющих темп развития скорее ситуация обратная и именно биохимические часы контролируют темп клеточных делений и продолжительность клеточного цикла у множества видов животных. Изменение химического состояния клетки одновременно влияет на принятие решений о делении клеток, а также на время и нанравление дифференцировки. Молекулярные механизмы контроля клеточных делений в эмбриогенезе практически не изучены и представляют собой одну из центральных проблем современной биологии развития. Генеалогические мутанты нематод могут сыграть ключевую роль в решении этой проблемы. [c.91]

    Если мы примем этот подход, полностью зная его ограничения, то увидим бросаюш,уюся в глаза особенность, вытекающую из множества исследований, — замечательную способность неравновесной термодинамики унифицировать различные явления. Поэтому не так существенно, являются ли системы истинно линейными во всем диапазоне, представляющем интерес для биологии гораздо важнее выбрать единую четкую логическую структуру системы. Подобно этому, не обязательно, чтобы наблюдаемая линейность отражала простое линейное поведение фундаментальных кинетических параметров. Если учесть возможность сложной регуляции, то линейность вполне может быть следствием сложного взаимодействия нелинейных параметров. В противоположность громоздкому конгломерату кинетических параметров, которые часто вытекают из построения модели, феноменологические уравнения впечатляюще просты. Хотя эти уравнения не могут описывать молекулярные механизмы (если только они не интерпретируются через молекулярные параметры), они дают ограничивающие условия, которые должны выполняться в любой рассматриваемой модели, и это всегда вносит ясность в вопросы энергетики. [c.11]


Смотреть страницы где упоминается термин Молекулярная биология ограниченная: [c.147]    [c.55]    [c.96]    [c.133]    [c.96]    [c.91]   
Биологическая химия (2002) -- [ c.321 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулярная биология



© 2025 chem21.info Реклама на сайте