Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деление органических соединений

    В основе классификации органических соединений обычно лежит теория строения органических соединений. Органические соединения классифицируют по определенным структурным элементам и по расположению атомов в молекуле. Существуют два основных принципа деление органических соединений по расположению углеродных атомов в молекуле и по характерным структурным элементам. [c.361]


    Необходимо отметить, что это деление органических соединений на элементорганические и другие нестрогое и является весьма искусственным. [c.248]

    Наличие ядра является главной, но не единственной структурной особенностью эукариотических клеток. В цитоплазме существует ряд других внутриклеточных органелл, окруженных своими собственными мембранами. Окислительное фосфорилирование и ряд предшествующих стадий окисления органических соединений протекают в митохондриях. Эти органеллы окружены двумя фосфо-липидными мембранами. Внутренняя мембрана, построенная из специфических белков, участвует в сопряжении переноса электронов от органических соединений к кислороду с фосфорилированием АДФ. Еще более сложными органеллами являются хлоропласты, в которых проходят все стадии фотосинтеза. Уникальной особенностью этих двух типов органелл является то, что они содержат ДНК, которая реплицируется перед их делением и несет информацию о некоторых белках и РНК, необходимых для формирования и функционирования этих органелл. Тем не менее большая часть информации, необходимой для производства всего набора как митохондриальных, так и хлоропластных белков, находится в хромосомной ДНК. [c.25]

    Деление органических соединений (ковалентных соединений углерода) на классы по растворимости [c.214]

    В пособии сохранено классическое деление органических соединений на ациклические и циклические. [c.3]

    ДЕЛЕНИЕ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ НА КЛАССЫ ПО РАСТВОРИМОСТИ [c.62]

    Новая классификация изобретений Великобритании предусматривает деление объектов на 8 разделов, 40 классов и более 400 подклассов. Раздел обозначается прописной латинской буквой, класс — арабской цифрой, подкласс — также прописной латинской буквой дальнейшее деление обозначается поочередно арабскими цифрами н прописными латинскими буквами. Нефтехимическая тематика в основном относится к классу В1 — Физические и химические процессы и аппараты , подклассам С2С — Органические соединения и С5Е — Деструктивный пиролиз, газ, углеводороды и т. д. . [c.572]

    Метод экстракции металлов из водных растворов их солей органическими соединениями широко используют для отделения урана от осколков деления ядер урана, тория от других металлов, ему сопутствующих. Методом экстракции органическими соединениями отделяют гафний от циркония, ниобий от тантала, разделяют элементы редкоземельной группы. [c.574]

    Деление веществ на органические и неорганические возникло вследствие своеобразия органических соединений, обладающих специфическими свойствами. Долгое время считалось, что углеродсодержащие вещества, образующиеся в организмах, в принципе, невозможно получать путем синтеза из неорганических соединений. [c.549]

    Известно, однако, что многие элементы могут в зависимости от условий либо отдавать, либо присоединять электроны. Отсюда следует, что между металлами и металлоидами не существует резкой границы, само же деление подчеркивает только преимущественную тенденцию данного вида атомов и отнюдь не является абсолютным. Основное достоинство представлений Косселя заключается в простоте и наглядности, основной недостаток — в их ограниченной применимости. Действительно, все органические соединения и очень многие неорганические построены по неионному типу и поэтому не могут рассматриваться с ионной точки зрения без сильного расхождения резуль- [c.88]


    Необходимо сказать, что такое деление органического синтеза является в значительной мере условным, так как некоторые органические соединения могут служить исходными или промежуточными соединениями для синтеза продуктов всех трех перечисленных групп. [c.12]

    Индексы удерживания одних и тех же соединений в образцах различного происхождения, опре деленные в разных условиях хро матографического разделения, находятся в достаточно узком интервале, что позволяет выби рать узкое окно при автомати ческой идентификации органических соединений е помощью ЭВМ [c.110]

    В соответствии с основным делением химических соединений, по типу входящих в составное звено элементов, можно выделить неорганические, органические и элементоорганические полимеры. По происхождению полимеры бывают природные (встречаются в природе, например, натуральный каучук, крахмал, целлюлоза, белки), модифицированные (дополнительно измененные природные полимеры, например, резина) и синтетические (полученные методом синтеза). По характеру соединения составных звеньев в составе макромолекулы различают полимеры линейные, разветвленные, лестничные, трехмерные сшитые и их видоизменения (рис. 31.1). По отношению к нагреванию выделяют термопластичные и термореактивные (см. ниже). По типу химической реакции, используемой для получения, различают полимеризационные (реакция полимеризации) и поликон,ценсационные (реакция поликонденсации) полимеры. [c.603]

    Последовательность изложения материала в этой книге отличается от обычно принятой в учебниках. Автор отказался от традиционного деления на алифатические и ароматические соединения. В основу построения учебника положена классификация углеводородов и их производных по характеристическим группам. В начале учебника изложен материал по углеводородам как основе построения любого органического соединения. Затем следуют функциональ- [c.7]

    Второй основной принцип классификации — деление по функциям (характеристическим группам). В зависимости от того, какая функция введена в молекулу углево-дорода вместо атома водорода, получаем семейство органических соединений определенного типа  [c.83]

    Классификация органических соединений. В настоящее время принято деление органических соединений на несколько больших групп. В основе этой классификации лежит строение углеродного скелета — основы органического соединения. Как указывалось, углеродные цепочки могут быть прямыми или разветвленными, а также замыкаться в циклы (схема 1). В состав последних, кроме атомов углерода, могут входить атомы других элементов кислорода, азота, серы. Такие соединения получили название гетероциклических ( гетерос — по-гречески другой). [c.20]

    Несомненно, принимая во внимание различные основы номенклатуры, оба названия следует признать правильными. Однако можно установить критерий для их выбора если молекула содержит в числе атомов, непосредственно связанных с фосфором, один атом, более электроотрицательный, чем фосфор (за исключением углерода), то предпочтение следует отдавать названию, образованному от соответствующей гипотетической кислоты. Это правило имеет значение для сохранения единообразия названий, но не является обязательным. Тем не менее, соблюдение его очень полезно, поскольку правило согласуется с делением органических соединений трехвалентного фосфора на два подкласса а) фосфины и их замещенные производные (арсинофосфины, стибинофосфины, силилфосфины, станнилфосфины и т. п.) б) производные фосфинистой, фосфонистой и фосфористой кислот. Свойства соединений этих двух подклассов значительно различаются между собой, что подтверждает правильность произведенного разделения. [c.57]

    К середине XIX в. стало уже непопулярным причислять то или иное соединение к органическим или неорганическим, исходя лишь яз того, является или не является оно продуктом живой ткани. В то время уже были известны такие органические соединения, оторые никак не могли быть продуктами жизнедеятельности организмов. Тем не менее деление соединений на органические и неорга-инческие имело смысл. Свойства соединений этих классов, как выяснилось, настолько различаются, что даже приемы работы химика-органика и химика-неорганика совершенно различны. [c.73]

    Дальнейшее деление может быть проведено на основе других характерных свойств соединений. Так, в классе углеводородов можно произвести деление на соединения насыщенные и ненасыщенные, эфиры можно разделить по характеру цепей, прямых или разветвленных, амины—по числу радикалов. Физико-химические свойства растворителей (температура кипения, давление пара, теплота испарения, критические температура и давление, вязкость, плотность, поверхностное натяжение, рефракция, криоскопическая и эбулио-скопическая постоянные) в виде обобщенных формул или отдельных данных указаны в руководстве Вейсбергера Органические растворители [117]. [c.18]

    В 1927 г. Герц [67] сопоставил нарахор 51 органического соединения с их молекулярной рефракцией и пашсл, что только в некоторых гомологических рядах частное от деления нарахора на молекулярную рефракцию [c.380]


    Данные элементы иногда делят на три подгруппы подгруппу железа (Fe, Ru, Os), подгруппу кобальта (Со, Rh, Ir) и подгруппу никеля (Ni, Pd, Pt). В пользу такого деления говорят характерные степени окисления элементов (табл. 26.1) и некоторые другие свойства. Например, все элементы подгруппы железа являются активными катализаторами синтеза аммиака, а подгруппы никеля — реакций гидрирования органических соединений. Для элементов подгруппы кобальта характерно образование колмплексных соединений состава [9(NH3)6]r3, где Г — галоген-ион. [c.522]

    Определение гомологических серий и альтернативных брутто-формул. При групповой идентификации органических соединений по масс-спектрам низкого разрешения следует учитывать, что основу классификации органических веществ образуют гомологические ряды с гомологической разностью СНг, имеющей массовое число 14. По этой причине целесообразно выражение массовых чисел различных частиц (молекул, радикалов, ионов) в четыр-надцатиричной системе счисления. При этом каждое массовое число М может быть представлено в виде пары (десятичных) чисел х у), где у — число единиц младшего разряда четырнад-цатиричного массового числа, х — число единиц старших разрядов. Параметры X тл у определяются как целое частное от деления УИ на 14 (л ) и как остаток (у), например 78 = 5-14-1-8 или в сокращенной записи (5 8) 253 = = 18-14 + 1 - (18 1) и т. д. [c.183]

    Деление химии на неорганическую и органическую сложилось исторически. С давних пор принято было считать, что органическая химия изучает вещества живой природы — вещества, получаемые из организмов. Сложились представления, что вещества органического происхождения и их превращения управляются особой силой — жизненной силой (Берцелиус). 1828 г. принес первый факт, подрывающий основы учения о жизненной силе,— Велер синтезировал мочевину — один из продуктов, вырабатываемых организмом. Вслед за этим был синтезирован целый ряд органических соединений, среди которых жиры (Бертло, 1в54) и углеводы (А. М. Бутлеров, 1861). Стало очевидным, что органические соединения, как и неорганические, могут быть получены искусственным путем без вмешательства таинственных сил. В органической химии восторжествовали материалистические представления. Постепенно круг соединений, получаемых в лаборатории, стал расширяться. [c.115]

    Хроматографические методы занимают особое место среди физико-химических методов анализа, являясь прежде всего универсальным способом разделения элементов. Они выгодно отличаются от всех других известных методов разделения высокой специфичностью (избирательностью действия), позволяют осуществить разделение весьма близких по свойствам неорганических или органических веществ. Так, например, хроматографическим путем разделяют смеси катионов металлов щелочной группы, щелочноземельных металлов, редкоземельных элементов, элементов-двойников, таких как цирконий и гафний разделяют смеси геометрически изомерных комплексных соединений (например, цис-транс-язомерных комплексов платины или кобальта) отделяют микроколичества трансплутониевых элементов от основной массы урана или плутония, а также от продуктов деления разделяют смеси анионов галидов, кислородных кислот галогенов, фосфорных кислот, аминокислот, смеси органических соединений, являющихся пред- [c.9]

    Три названных вещества представляют собой наиболее устойчивые формы существонания четырех элементов в нынешних геологических условиях. Иными словлми, им соответствует минимум потенциальной энергии. Следовательно, любые органические соединения, содержащие эти элементы или некоторые из них, будут обладать оире-деленным запасом энергии по сравнению с основным состоянием (СО- + Н О -)- N ) и будут способны выполнять нужную нам функцию. Задача, однако, поставлена на оптимизацию какие типы соединений будут справляться с этой функцией наилучшим обраэом  [c.138]

    В последшие годы опубликовано большое число работ в данной области. Но большинство из них, за редким исключением, не учитывает особенности многокомпонентных систем,методы спектроскопии простых веществ и смесей механически переносятся на сложные системы из бесконечно большого разнообразия гомологов органических соединений. Существование статистических бернуллиевских распределений состава по энергии Г1-2 Л означает аналогичное распределение по ее составляющим. таким,как электронная энергия, колебательная, вращательная и т.д. Это означает,что различные по структуре и химическим свойствам компоненты объединяются одним законом статистического расцре-деления и образуют энергетическое множество. [c.102]

    Формирование понятий о свойствах органических веществ базируется на представлениях об их составе и строении. Блок классификации веществ пополняется новым принципом деления веществ по составу на неорганические и органические (соединения углерода), тем самым подчеркивается особенность состава органических веществ. В дальнейшем классификация веществ по составу детализируется при делении органических веществ на углеводороды, кислородсодержащие и азотсодержащие органические вещества. Однако в органической химии характеристика веществ по составу является, как известно, совершенно недостаточной, и поэтому далее классификация органических веществ осуществляется по признаку сходства и различия в их строении. Последовательность иззгчения этих групп веществ определяется усложнением их строения. [c.264]

    Весьма скоро химики убедились, что органические вещества подчиняются тем же закономерностям, что и неорганические. Но деление химии на неорганическую и органическую сохранилось. Критерием деления стал состав веществ. А. Кекуле в 1851 г. определил органическую химию как химию соединений углерода. Однако это определение не вполне последовательно. Есть группы соединений углерода, которые все-таки причисляют к неорганическим (оксид и диоксид углерода, карбонилы металлов, карбонаты, карбиды). В то же время все металлорганическне соединения могут быть причислены к органическим. Определение, данное Кекуле, упускает нз виду принципы образования органических соединений. [c.10]


Смотреть страницы где упоминается термин Деление органических соединений: [c.9]    [c.9]    [c.73]    [c.13]    [c.13]    [c.14]    [c.242]    [c.338]    [c.343]    [c.391]    [c.418]    [c.440]    [c.67]    [c.29]    [c.212]    [c.256]    [c.15]    [c.212]    [c.212]   
Систематический качественный анализ органических соединений (1950) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Делении



© 2025 chem21.info Реклама на сайте