Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основы теории реакций органических соединении

    ОСНОВЫ ТЕОРИИ РЕАКЦИЙ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ [c.38]

    Предложена схема реакции деструктивного фотообесцвечивания красителей окислением на основе теории самоокисления органических соединений Баха—Энглера. [c.69]

    Теоретическими основами органической химии являются теория строения органических соединений и теория реакционной способности, т. е. учение о соединении атомов в молекуле, о взаимном влиянии атомов в молекуле и о протекании реакций. Критериями ценности теории являются  [c.22]


    Многое было сказано и написано о возможном порядке изложения материала в учебниках, содержащих основы органической химии. Следует ли излагать вместе химию алифатических и ароматических соединений, нужно ли углубляться в изложение теории строения органических соединений до рассмотрения органических реакций — эти и другие аналогичные вопросы всегда были предметом серьезных споров, но так и не получили четкого решения (если оно вообще возможно). Подход к изложению материала в этой книге до некоторой степени компромиссный, так как трудно, если не невозможно, научить сразу всему, а частичное повторение материала приносит несомненную пользу. Так, мы вкратце касаемся электронной теории органической химии в главе 1 (структуры Льюиса), более подробно в главе 5 [c.9]

    За последние 30—40 лет вопросы о механизмах реакций органических соединений стали решаться более глубоко в связи с дальнейшим развитием теории строения Бутлерова, накоплением новых ценных фактов в органической химии и новых объяснений хода превращений веществ на основе некоторых электронных представлений, при широком приложении методов физики. Многим мы обязаны успехам в области кинетики и катализа реакций. [c.11]

    Реакции органических соединений, представляющих собой многоатомные, часто очень сложные молекулы, в принципе всегда могут идти в нескольких (в частном случае в двух) возможных направлениях. Выраженность какого-либо одного преобладающего направления характеризует селективность реакции. Направление реакции зависит от состава, строения, реакционной организации вещества и от внешних условий. Решить вопрос о возмол<ном направлении реакции данного вещества в данных условиях помогают многочисленные экспериментальные правила органической химии. Теоретически он решается на основе общей теории химических реакций. [c.38]

    Данные современной органической химии позволяют значительно глубже понимать органические реакции, рассматривать группы их с общей точки зрения. Вместе с тем важно подчеркнуть, что теория строения органических соединений, основы которой были заложены А. М. Бутлеровым более 100 лет тому назад, и сегодня остается фундаментом органической химии. Речь идет прежде всего о точном знании самых тонких деталей геометрического (а не только — химического ) строения органических молекул, [c.32]

    Хотя в последнее время и появился ряд обзоров по фотохимии, они не могут заменить книги, в которой были бы систематически изложены теоретические основы фотохимии и даны примеры интерпретации фотохимических реакций органических соединений. Такой книги пока нет, и для химика-органика, решившего заняться фотохимией, знакомство с элементарной теорией фотохимических процессов оказывается делом очень сложным. [c.7]


    Сборник содержит систематически подобранные вопросы и задачи по курсу современной органической химии. Задачи и вопросы тесно увязаны с современной теорией органической химии. Свойства каждого класса органических соединений рассматриваются на основе характеристики химических связей, электронного и пространственного строения молекул. Большое внимание уделено условиям проведения реакций органических соединений, их механизмам, влиянию структурных факторов на реакционную способность органических соединений. В сборник включены задачи по ИК-, УФ- и ЯМР-спектроскопии. [c.231]

    Окисление. Механизм. Со времени опубликования пер-оксидной теории процессов окисления Баха — Энглера на основе работ Н. Н. Семенова, Н. М, Эмануэля и большого числа других исследований установлен принципиальный механизм реакций окисления углеводородов (КН) и других органических соединений. [c.173]

    Па некоторых жирных кислотах установлено ", что при низких температурах (до 200°) происходит превращение со снижением кислотного числа. Также установлено, что продуктом превращения является соответствующий кетон. Интересным фактом с точки зрения разработанной одним из нас теории происхождения нефти является обнаруженное нами превращение канифоли и каналов в присутствии активных глин в углеводороды. Новая теория происхождения нефти, выдвинутая в 1942 г., устанавливает на основе обширного экспериментального материала, что в присутствии природных активных глин происходит преобразование органических соединений со снижением степени окисления. Весь изложенный выше материал показывает, насколько велика область превращений, вызываемых алюмосиликатами. Действие природных активных глин на продукты анаэробного биохимического превращения животных и растительных остатков приводит при 150—200° к образованию нефти. Эта область температур достаточна для осуществления реакций дегидратации спиртов и кетонов, полимеризации, изомеризации, диспропорционирования, образования углеводородов и кетонов из кислот, которые, несомненно, имеют место в процессе образования нефти. [c.269]

    Для группы однотипных реакций эта восприимчивость обусловлена в значительной степени устойчивостью образуемого субстратом и реагентом переходного состояния, т. е. величиной энергии активации реакции. Современная квантовохимическая теория реакционной способности органических соединений [218, 219] предусматривает в принципе два подхода к корреляции энергий активации. Один из них — так называемое приближение изолированной молекулы, имеющее в своей основе постулат о том, что энергия активации тесно связана с величиной электронной плотности на реакционном центре. Отсюда естественно предположить, что а-константы пропорциональны зарядам, индуцируемым заместителем на реакционном центре. Поскольку для весьма широкого круга реакций а-константы не зависят от типа реакционного центра, в качестве последнего можно рассмотреть, в частности, водород метиновой группы кольца. Тогда указанное предположение сводится к утверждению о том. что о-константы заместителей пропорциональны зарядам, вызываемым ими в м-или я-положениях бензольного ядра. [c.90]

    До 80-х годов катализ являлся преимущественно объектом изучения органической химии. На примерах взаимодействия органических соединений с различными реагентами и агентами к этому времени было изучено уже несколько десятков типов реакций, составляющих основу наиболее важных методов органического синтеза. С 80-х годов каталитические органические реакции стали также основой многочисленных изомерных превращений, молекулярных перегруппировок и таутомерных процессов. Слияние гомогенного органического катализа с органическим синтезом, или, точнее, проникновение первого во второй, в качестве метода вызвало тщательное изучение механизма каталитических реакций, в том числе детальное исследование роли катализаторов. Все это способствовало экспериментальному установлению большого числа закономерностей, в конечном итоге обогащавших как теорию химического строения, так и теоретические представления в области са.мого катализа. Наряду с этим, с определенной поры катализ становится и объектом изучения физической химии. [c.76]

    Эту книгу в основном можно разбить на три части. Первые 8 глав широко касаются структурных концепций. В этой части обсуждаются структура, номенклатура, распространение в природе и физические свойства органических соединений. Рассматривается характер химической связи и стереохимия органических соединений затем следует обсуждение зависимости между структурой и реакционной способностью в связи с теорией кислот и основа-пнй. Следующие 12 глав посвящены органическим реакциям, класс за клас- [c.26]

    Фактический материал в области органической химии значительно вырос, особенно в последние годы. И поскольку это развитие продолжается неослабевающими темпами, с каждым днем становится все труднее овладевать огромным материалом. Поэтому авторы сочли необходимым положить в основу руководства более глубокую взаимосвязь с теоретической органической химией. Авторы отказались от обычного до настоящего времени подразделения материала по классам органических соединений в пользу распределения материала по типам реакций. Это позволило расширить круг рассматриваемых объектов, связав более тесно теорию, лабораторную практику и некоторые аспекты практического приложения в технике. Изучающий органическую химию, таким образом, с самого начала должен знакомиться с современными методами работы и не только регистрировать фактический материал, а изучать наиболее существенные, теоретически обоснованные закономерности и учиться самостоятельно их применять. [c.7]


    Среди эмпирических закономерностей, позволяющих осуществлять количественную или полуколичественную оценку различных параметров, характеризующих химические соединения, наибольшее значение имеют методы сравнительного расчета физико-химических свойств. Общий подробный обзор методов такого рода приведен в монографии М. X. Карапетьянца [1]. Применительно к задаче вычисления констант скоростей и равновесия имеют особое значение некоторые частные случаи приложения методов сравнительного расчета к свободным энергиям реакций или активации. Эти частные случаи объединяются в одну общую закономерность, известную под названием линейности свободных энергий (ЛСЭ). Ниже рассмотрены основные результаты, полученные путем непосредственного приложения ЛСЭ. Эта часть излагается в виде исторического обзора. Затем приводится общее теоретическое обоснование как ЛСЭ, так и других методов линей юго и полилинейного сравнительного расчета. Далее с этих позиций рассмотрены общие основы абстрактной количественной теории реакционной способности органических соединений. Последующая, основная часть книги посвящена сопоставлению теории с экспериментом и анализу конкретного материала. [c.13]

    Эта книга предназначена для студентов, уже знакомых с основами органической химии и желающих углубить свои знания. Как и в моей предыдущей книге ( Advan ed Organi hemistry ), основное внимание уделяется реакциям органических соединений. Отражены крупные успехи, которые были достигнуты благодаря применению качественной электронной теории в органической химии. Книга состоит из трех частей. Первая, посвященная реакциям, обычно называемым ионными, включает, как это и принято, два раздела соответственно тому, считается реагент электрофильным или нуклеофильным. Во второй части описаны радикальные реакции, а в последней — молекулярные. Большинство реакций, для которых механизм не является убедительно доказанным, классифицированы, естественно, лишь условно. [c.7]

    В общем случае под действием сил сродства ,— считал Бертолле,— протекают обратимые реакции, ограниченные пределом. Предполагая, что скорость реакции пропорциональна силе сродства, Бертолле провел первую научно обоснованную качественную аналогию между физическим (закон охлаждения) и химическим (скорость реакции) процессами. Представления Бертолле явились основой для развития главного направления химической кинетики в XIX в. аналогия с физическими процессами, изучение динамики превращений на основании анализа их статики, исследование влияния условий на протекание реакции. Разумеется, и изучение механизмов химических реакций оказало некоторое влияние па развитие химической кинетики XIX в. В конце XVIII в. было выдвинуто представление (В. Хиггинс, Фульгем), что химическая реакция протекает через промежуточные стадии. В начале XIX в. эта мысль получила подтверждение при изучении ряда каталитических реакций (Д. Клеман и Ш. Дезорм, Г. Дэви, И. Деберейнер, Я. Берцелиус), а с 1830 г. начали изучать механизмы сложных реакций, характеризующихся начальным ускорением (Ш. де ла Рив, Миллон, X. Шёнбайн, Ф. Кесслер) [345, стр. 30—31]. Причем к исследованию механизма органических превращений химики приступили только с 1834 г. (Ю. Либих), когда были созданы первые теории строения органических соединений. [c.143]

    В основе современных представлений об окислении жиров и масел лежит перекисная теория окисления органических соединений Баха — Энглера и теоретические представления о цепных реакциях, сформулированные советским ученым акад. Н. Н. Семеновьгм. [c.204]

    Одним из слабых мест теории типов было истолкование свойств непредельных соединений. ...Реакции, при которых тела вступают в соединение путем прямого присоединения, не могли, по крайней мере во всех случаях, быть объяснены илп предвидены теорией типов ,— писал в 1861 г. Менделеев (19, стр. 23]. Попытка найти выход из создавшегося положения была изложена Менделеевым в статье под заглавием Опыт теории пределов органических соединений , из которой и была заимствована выдержка. Суть этой работы такова. К предельному ряду С Х.2п4-2 принадлежат веш,ества, которые не способны к присоединению одновалентных атомов или групп, а также радикального кислорода или серы без распадения. К рядам С Х2 , С Х2 2 и т. д. принадлежат вещества, способные к такому присоединению и стремящиеся приблизиться к пределу С Х2п+2- в своей работе Менделеев ограничивается углеводородами, немногими галогенопроизводными, а главным образом рассматривает кислородсодержащие органические соединения. Распределяя последние по предельности, Менделеев очень тонко пользуется понятиями теории типов о типическом и радикальном кислороде. Например, ангидрид уксусной кислоты и простые эфиры он относит к предельному ряду, а ангидриды двухосновных кислот и окись этилена к непредельному ряду СпХап. В этот же ряд оп помещает и альдегиды, хотя сомневается, не правильнее ли их отнести к предельному ряду. Мы видим, что теория пределов Менделеева позволяла до известной степени разобраться в предельности и непредель-ности органических соединений и даже в степени их неире-дельности, но основа ее — теория типов — предоставляла недостаточную возможность для кардинального разрешения этой проблемы. Характерно, например, то, что Менделеев к предельным соединениям причисляет два ряда углеводородов, которые только по теории типов могли считаться различными, а именно углеводороды, гомологичные болотному газу СпНап+з, и их производные, полученные путем замещения , и гомологи этила и метила (С Н2 1)з = СтЩт+г и их производные [там же, стр. 24]. [c.71]

    Как известно, А. М. Бутлеров предложил единственно правильную и плодотворную теорию строения органических соединений. Химия ненасыщенных углеводородов, которая лежит в основе многих процессов переработки углеводородного сырья, создана трудамр Бутлерова и его учеников. Бутлеров впервые синтезировал изобутилен, диизобутилен, триизобутилен и ряд других олефинов изостроения, изучил их различные реакции, в частности реакцию полимеризации олефинов. Бутлеров первый исследовал процесс гидратации этилена и других олефинов. Химические свойства олефиновых углеводородов стали предметом исследования последователей Бутлерова. Общеизвестна работа А. П. Эльтекова в области алкилирования олефинов. Олефины являются наиболее ценным сырьем для промышленности органического. синтеза, и поэтому большое значение имеют исследования в этой области, в частности открытая С. С. Наметкиным реакция дегидрогидрополимеризации. [c.4]

    Первой такой теорией была теория радикалов (Берцелиус, Либих, Вёлер, Гей-Люссак). В ее основу было положено то, что при многих химических реакциях группа из нескольких атомов — орга-1iU4e Kuu радикал, входящий в состав органического соединения, может переходить без изменения из одной молекулы (исходное вещество) в другую (продукт реакции). Поскольку Берцелиус рассматривал органические вещества как системы, состоящие из двух частей — противоположно заряженных радикалов, связанных с помощью электростатического взаимодействия, теория радикалов известна еще и как дуалистическая теория (от лат. duos — два). Однако сторонники этой теории рассматривали радикал как абсолютно устойчивую и неизменяемую часть молекулы. В этом и была [c.8]

    В книге изложены основные идеи теории строения, современные представления о природе химических связей в органических молекулах, о стереохимии и конформаци-онном анализе. На этой основе рассматриваются важнейшие типы и механизмы химических реакций электрофиль-ные, нуклеофильные и радикальные. Книга включает в себя материал о фотохимических превращениях, поведении биоорганических веществ в ней применены принципы кдрреляционного и информационного анализа органических соединений. [c.2]

    Теоретические основы цветных реакций с участием ОргАР были разработаны советскими учеными В. И. Кузнецовым, И. М. Ко-ренманом, И. С. Мустафиным и др. Так, согласно теории В. И. Кузнецова, при образовании в результате химической реакции с ОргАР молекулярных соединений цвет продукта зависит от природы реагирующих веществ и заместителей в органической молекуле. Чем больше различаются по химическим свойствам реагирующие вещества, тем глубже и интенсивней окраска продукта. [c.70]

    Дальнейшее развитие теории типов связано с именем Ш. Жерара. Он рассматривал органическое соединение как нечто целое, не состоящее из двух частей, но ввел одновременно понятие об остатках — атомных группах, соединяющихся друг с другом при реакциях обмена (эти реакции составляют большинство превращений, происходящих в химии). Эти остатки, по существу те же радикалы под новым названием, стали писать в типических формулах. Это не должно было обозначать, что соединения действительно построены из подобных остатков Ш. Жерар и его последователи стремились таким образом выразить лишь превращения seiu me, их реакции. В основу унитарной теории Жерара положено представление об определенных типах органических соединений, каждое из которых производится как бы от определенного родоначального неорганического вещества. Теорию эту чаще называют теорией типов. Раньше всего были развиты представления о типах водорода и хлороводорода. К типу водорода относили углеводороды — гомологи метана, а также альдегиды и кетоны. Формулы этих соединений изображались так  [c.10]

    Свойства этих растворов объясняет теория электролитической диссоциации. Знание теории электролитической диссоциации является основой для изучения свойств неорганических и органических соединений, для глубо<ого понимания механизмов химических реакций в растворах электролитов. [c.160]

    В настоящее время, особенно за последние годы, объем фактического материала, накопленного в области органической химии, значительно увеличился. И поскольку темпы его накопления не ослабевают, становится все труднее и труднее овладевать этим огромным материалом. Приняв это во внимание, авторы положили в основу руководства более глубокую взаимосвязь с теоретической органической химией кроме того, в отличие от ранее принятого распределения материала по классам органических соединений здесь материал расположен по типам реакций. Последнее позволило расширить круг рассматриваемых объектов, а также более полно показать связь теории и лабораторной практики с некоторыми аспектами практического приложения в промышленности. Изучаюш,ий органическую химию, таким образом, с самого начала должен знакомиться с современными методами работы кроме того, ему следует не просто регистрировать отдельные факты, а изучать наиболее существенные, теоретически обоснованные закономерности и учиться самостоятельно их применять. [c.7]

    Итак, к концу 1940-х гг. гипотеза о радикально-цепном механизме расширяется до теории параллельно-последовательных реакций деструкции и уплотнения на основе радикально-цепного механизма. К примеру, А.Ф. Красюков в своей книге, являющейся первой книгой выпущенной в печати на тематику замедленного коксования, представляет процесс коксования как сумму параллельно-последовательных реакций, протекающих по радикальному механизму [11, 29, 55, 63, 69, 78]. Эта попытка объяснить механизм термического преобразования нефтяных остатков является довольно серьезной и масштабной (теория не теряла своей актуальности около 20 лет). Параллельнопоследовательные реакции деструкции и уплотнения долгое время были приняты за основу механизма коксообразования. Помимо А.Ф. Красюкова эту идею поддержали многие исследователи того времени и использовали ее в своих разработках по изучению процесса коксования. Обобщенная теория параллельно-последовательных реакций применительно к разложению газообразных, жидких и твердых топлив изложена в работе [90] и выглядит следующим образом. В результате термического воздействия на нефтяные остатки происходят деструктивные изменения их компонентов, сопровождающиеся распадом исходных молекул и образованием новых. Сущность теории заключается в том, что при термическом разложении топлива протекает одновременно несколько реакций с различными энергиями активации 76]. Следует отметить, что в практике изучения строения высокомолекулярных органических соединений нефти принят метод разделения их на ряд структурных групп (масла, смолы, асфальтены, карбоиды и др.) и последующего изучения их химического состава [24, 99]. [42] Среди всех групп наибольший интерес при исследовании процесса коксования представляют смолы и асфальтены, которые являются высокомолекулярными гетероциклическими соединениями нефти, и которые считаются коксообразующими веществами. [c.62]

    Среди них были Н. Н. Зинии, снискавший себе мировую славу открытием некоторых важных реакций (превращение нитросоединений в аминосоединения, нитробензола в анилин и другие химические продукты), которые стали основой для широкого промышленного получения разнообразных синтетических красителей А. М. Бутлеров— создатель теории химического строения (иначе называемой структурной) органических веществ. Эта теория объясняла многообразие органических соединений строением, структурой молекул. Свойства всех молекул зависят только от числа, вида и порядка распололсения атомов и молекул. [c.4]

    Теоретические разработки добутлеровского периода внесли определенный вклад в познание строения органических соединений. Но ни одна из ранних теорий не была всеобщей. И лишь А. М. Бутлерову удалось создать такую логически завершенную теорию строения, которая и по сей день служит научной основой органической химии. Теория строения А. М. Бутлерова базируется на материалистическом подходе к реальной молекуле и исходит из возможности познания ее строения экспериментальным путем. А. М. Бутлеров при установлении строения веществ придавал основополагающее значение химическим реакциям. Теория строения А. М. Бутлерова не только объясняла уже известные факты, ее научное значение заключалось в прогнозировании существования новых органических соединений. [c.21]

    Уравнение (IV.13) вполне аналогично известным уравнениям Бренстеда, Гаммета — Тафта и Поляни — Воеводского — Семенова и так же, как и они, приложимо только в условиях названных выше ограничений. Уравнения такого типа лежат в основе принципа линейных соотношений свободных энергий (ЛССЭ), на базе которого строится одно из современных направлений количественной теории органических соединений [1]. В более общем виде использование ioro принципа будет изложено в следующей главе, здесь же мы ограничимся только рассмотрением зависимостей между скоростью и энергетикой гетерогенно-каталитических реакций. [c.78]

    В данной монографии рассматриваются основы этого подхода и применение его к различным проблемам теоретической и синтетической органической химии. Быстрое развитие этой области науки, как и многих других, меняет традиционную форму монографии капитальные обзоры уступают место сборникам обзоров по отдельным проблемам, охватывающим современное состояние теории. К этому типу книг относится и представляемая на суд читателей. Отдельные главы книги написаны крупными специалистами в своих областях, что позволяет читателю получить новые идеи из первых рук . Естественно, что главы не равноценны по своей значимости, широте и охвату материала и даже по стилю изложения кроме того, в книге содержится явно нетрадиционный для химика-органика материал (4ютохимия, расчеты поверхностей потенциальных энергий, ион-молекулярные реакции и т. д.). Однако в целом данная монография дает полное представление о современном подходе к проблемам реакционной способности органических соединений, и актуальность проблем, затронутых в книге, не вызывает сомнений. Можно надеяться, что это издание будет с интересом встречено нашими химиками. [c.6]

    Основная область научных исследований — химия бора. Разработал простые методы синтеза ди-борана. Открыл (1959) реакцию гидроборирования ненасыщенных органических соединений, заключающуюся в присоединении комплексных боргидридов или дибора-на по кратным связям (С = С, С = 0, С С, С = Ы, С=Ы) с расщеплением связи В—Н и приводящую к образованию органоборанов. Установил пути использования этой реакции для стереосиецифического гидрирования — присоединения водорода к двойной связи в цис-поло-жение, для цыс-гидратации, избирательного восстановления карбонильной группы и образования новых С — С-связей. Изучнл механизм реакций с участием 2-нор-борнил-катиона, обсуждение которого вызвало широкую дискуссию о характере карбониевых ионов и неклассической электронной делокализации. Исследуя продукты присоединения триметилбора или диборана к аминам, заложил основы теории количественного метода изучения стерических напряжений в молекуле. [c.76]

    Научно-исследовательская деятельность развивалась в трех направлениях теоретические и экспериментальные исследования по проблеме происхождения жизни исследования действия ферментов в живой клетке разработка биохимической технологии пищевых производств. Выдвинул (1922) теорию происхождения жизни на Земле. В ней обобщен накопленный наукой по этой проблеме фактический материал, прослежены этапы образования и последующей эволюции органических соединений, приведшие к возникновению белковых веществ, коллоидных систем и затем первичных живых тел. Согласно этой теории возникновение жизни является закономерным этапом развития материальной организации, достижению которого предшествует последовательное образование белковоподобных полимеров, комплексных коллоидных систем — коацерватоа и, наконец, простейщих живых тел. Теория Опарина легла в основу почти всех современных представлений о происхождении жизни. Создал (1935) теорию обратимости ферментативных реакций в живой клетке, объясняющую осо- [c.373]

    Научные работы посвящены квантовой химии, химической термодинамике и молекулярной спектроскопии. Разработал приближенные методы расчета термодинамических свойств для большой группы органических соединений (парафиновых и алициклических углеводородов и др.). Результаты, полученные с помощью этих методов, позволили предсказать направление и положение равновесия химических реакций, послужили основой для объяснения скоростей реакций с привлечением статистической теории. С целью подтверждения своих теоретических выводов ировел ряд спектроскопических измерений. Нашел, что потенциальный барьер внутреннего вращения молекулы этана составляет 3 ккал/моль (а не О, как предполагали ранее). Высказал (1947) предположение, что циклопентан существует в складчатой конформации. [332] [c.395]


Смотреть страницы где упоминается термин Основы теории реакций органических соединении: [c.13]    [c.64]    [c.23]    [c.10]    [c.407]    [c.113]    [c.15]    [c.54]    [c.213]    [c.489]   
Смотреть главы в:

Органическая химия Издание 4 -> Основы теории реакций органических соединении




ПОИСК





Смотрите так же термины и статьи:

Органические реакции

Основа соединения

Реакции органических соединений

Теория реакций



© 2025 chem21.info Реклама на сайте