Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеродные скелеты, строение

    Выше обсуждались вопросы, связанные с выяснением молекулярной структуры нефтяных асфальтенов вне зависимости от молекулярной структуры нефтяных смол. Между тем, в предыдущих главах мы неоднократно подчеркивали генетическую связь этих не-углеводородных высокомолекулярных соединений нефти. Рассмотрим теперь наличие общности и различия в строении молекул смол и асфальтенов, так же как мы сделали это в случае их элементного состава. Д. Эрдман в одной из своих работ [14] рассмотрению структурно-молекулярных вопросов смолисто-асфальтеновых веществ нефти предпослал характеристику их химического состава. Смолы и асфальтены, но мнению Эрдмана, представляют собою смеси высокомолекулярных неуглеводородных соединений нефти, в которых содержатся такие гетероэлементы, как кислород, азот и сера, а также небольшие количества ванадия и никеля. Используя большой комплекс физических методов для изучения углеродного скелета и соотношения в нем атомов углерода различной природы (ароматический, нафтеновый, парафиновый) в молекулах смол и асфальтенов, выделенных из сырых нефтей, природных асфальтенов и продуктов высокотемпературной переработки нефти, многие исследователи при решении принципиальных вопросов пришли к аналогичным выводам. В работах Эрдмана сделаны некоторые обобщения этих экспериментальных результатов. Важное научное значение имеет положение о том, что молекулы смол и асфальтенов состоят из нескольких плоских двухмерных пластин конденсированных ароматических и сферических нафтеновых структур, б.тиз-ких но своему строению. Принципиальное различие между смолами и асфальтенами, проявляющееся в различной их растворимости [c.98]


    Строение углеродных скелетов каучуков представляется в следующем виде. [c.216]

    Неизбежно протекающие реакции изомеризации с изменением углеродного скелета и реакции переноса водорода являются вторичными, поэтому природа всех продуктов в большой степени зависит от диссоциации карбоний-ионов, образующихся на отдельных стадиях крекинга. Эта диссоциация может идти по нескольким направлениям [285]. Томас предложил такую последовательность реакций при крекинге н-октана, типичного парафинового углеводорода нормального строения [275]. [c.337]

    Из конденсированных дубильных веществ, имеющих сплошной углеродный скелет, кроме катехинов, строение которых уже почти выяснено и которые будут рассмотрены в дальнейшем (стр. 691), следует назвать также дубильные вещества коры и древесины дуба, конского каштана и квебрахо (южноамериканское дерево), хинодубильную кислоту (из хинной корки) и т. д. [c.671]

    О генетической связи между высокомолекулярными углеводородами, смолами и асфальтенами нефтей свидетельствует значительное сходство их углеродного скелета. Подобно высокомолекулярным полициклическим структурам гибридного строения, преимущественно нафтено-ароматическим углеводородам, высокомолекулярные неуглеводородные компоненты — смолисто-асфальтеновые вещества нефти — характеризуются аналогичным углеродным скелетом. Однако, наряду со сходством в строении углеродного скелета трех основных высокомолекулярных составляющих нефтей (углеводородов, смол и асфальтенов), имеются и весьма серьезные различия в их молекулярной структуре. В генетически связанном ряду высокомолекулярные углеводороды— -смолы— -асфальтены наблюдается тенденция постепенного обеднения водородом и обогащения углеродом возрастает доля ароматических эяе- [c.39]

    Влияние состава и строения углеводородов Са—Се и простых эфиров на полноту осаждения асфальтенов иллюстрируется данными табл. 22. В качестве объекта был взят остаточный битум из мексиканской нефти (т. размягч. 57° С по методу кольца и шара пенетрация при 25° С равна 46) [4]. Обработка этого остаточного битума при комнатной температуре равными объемами разных растворителей дала данные, приведенные в табл. 22. Как в ряду парафиновых углеводородов, так и в ряду простых эфиров, примененных в качестве осадителей асфальтенов, отчетливо проявляется влияние двух факторов — состава и строения этих веществ — на растворяющую способность их в отношении асфальтенов чем выше молекулярный вес углеводородной части молекулы и чем больше степень разветвления углеродного скелета, тем выше растворяющая способность их в отношении асфальтенов, или, что то же самое, тем меньше количество осаждаемых ими асфальтенов из раствора. Циклогексан и его метил-и этилзамещенные полностью растворяют первичные асфальтены (асфальтены в осадок не выпадали). [c.72]


    Общие элементы в строении углеродного скелета всех высокомолекулярных соединений нефти, а также близость элементного состава смол и асфальтенов, несомненно, говорят о наличии генетической связи в ряду углеводороды—смолы—асфальтены. Это подтверждено экспериментально при мягком каталитическом гидрировании асфальтенов и смол получены углеводороды и смолы по своему составу, строению и молекулярным весам близкие к соединениям, выделенным из тех же сырых нефтей [6, 7]. [c.93]

    Карвон очень легко превращается в производное бензола, карвакрол. Эта реакция протекает, например, при нагревании карвона с серной, фосфорной или муравьиной кислотой. От( юда вытекает строение углеродного скелета карвона и положение в нем атома кислорода (см. стр. 796). [c.828]

    Алифатические (жирные) синтетические кислоты являются заменителем пищевых, преимущественно растительных жиров, используемых при изготовлении мыл, эмалей, лаков, олиф, консистентных смазок, пластификаторов для резины и других важных технических продуктов. В отличие от спиртов и кетонов — первичных продуктов распада гидроперекисей, имеющих такой же углеродный скелет, как и исходные углеводороды, кислоты, образующиеся при окислении, имеют различную длину углеводородной цепи их формирование сопровождается разрывом углеродного скелета молекулы окисляющегося углеводорода. Поэтому получается смесь кислот различного молекулярного веса, начиная с муравьиной. Окислением сырья, состоящего из углеводородов с определенным молекулярным весом, можно получать в основном фракции кислот, представляющих наибольшую ценность, например Сщ— ao Для производства моющих средств и С5—С9 для консистентных смазок. Выход товарных кислот на израсходованные алканы нормального строения составляет 77 —80 вес. %. При благоприятном составе сырья выход кислот Сю— jo равен 55—65, а С5—Сд — [c.286]

    Нафтеновые углеводороды при 500°С подвергаются каталитическому крекингу примерно в 500—4000 раз быстрее, чем термическому, и скорость крекинга определяется молекулярной массой, но не строением нафтенового углеводорода. Так, в условиях, при которых циклогексан подвергается крекингу на 7%, алкилированные пергидрофенантрены превращаются на 80%. Крекинг идет очень глубоко, причем распадаются и кольца, и боковые алкильные цепи. По общему правилу образуются С3- и С4-содержащие осколки. Жидкие продукты реакции имеют исключительно сложный состав, так как разрывы колец в различных местах, дегидрирование, обрывы цепей, изомеризация, полимеризация, перераспределение водорода и т. д. приводят к глубоким изменениям углеродного скелета молекул. [c.91]

    С. В. Лебедев с сотрудниками [58] обнаружили среди высших спиртов нормальный бутиловый и кротониловый спирты, а также нормальные первичные предельные спирты С5 и Се [59]. Однако, только в работах Ривкина [12, 60] состав высших спиртов и сопутствующих им углеводородов изучен более или менее детально. В этой работе Ривкин подвергал высшие спирты и углеводороды разделению с помощью борной кислоты. Он установил, что предельные высшие спирты — все первичные нормального строения, но рядом с ними имеются и непредельные спирты того же углеродного скелета. Строение гексиленового спирта соответствует гек-сен-4-ол-1, а строение октиленового — октен-4-ол-1. Получены указания на присутствие во фракции сырых высших спиртов также децилового спирта. [c.145]

    В процессе диагенетических преобразований в осадках накапливаются в основном липидные компоненты, удаляются белковые, карбогидрат-ные (углеводы) соединения и т. д. Изучение их и. с. у. показало, что при диагенезе в ОВ разного типа происходит однонаправленное изменение и. с. у. в сторону его облегчения, но в разных масштабах [29]. Судя по имеющимся в литературе данным [4], ОВ пород наследует так называемые биологические маркеры (индивидуальные химические соединения), углеродный скелет которых обладает высокой химической устойчивостью и специфичностью строения. В этом ряду стоят и-алканы и монометил-замещенные длинноцепочечные изоалканы, изопреноиды, циклические дитерпаны, тритерпаны, стераны, петропорфирины, а также высшие УВ, представленные стабильными ароматическими структурами. [c.29]

    В этом случае, однако, придется дегидратировать третичный спирт в присутствии кислотного катализатора, что может привести к некоторой перегруппировке углеродного скелета в связи с нахождением третичного углерода в а-полошении к карбинольной группе. Точное установление строения вещества, даже если его удается очистить, будет затруднительным. По тем же спобран ениям не рекомендуется проводить реакцию между реактивом Гриньяра и бициклооктаноном, так как дегидратация образующегося третичного спирта может привести к изменс нию углеродного скелета [c.517]

    Положение изопрена в этой структуре видно из линий разрыва, показанных точечными линиями. Пумерер с студентами повторил работу Гарриесса, используя в своих опытах каучук более высокой степени очистки и более совершенные методы они увеличили выход углеводорода каучука в виде продуктои разрушения углеродного скелета до 95% вместо 70% у Гарриесса. Продукты эти на 90 % состояли из ленулиновых соединений [28, 29J. Озон помог выяснить строение нескольких синтетических каучуков, в частности удалось показать, что бутадиен и изопрен присоединяются как в положение 1,2 (или 3,4), так и в положение 1,4. Эти данные были подтверждены методом инфракрасной спектроскопии и другими методами анализа. [c.216]


    Обработка силикагеля щелочью влияет и на структуру образующихся олефинов. На чистом силикагеле, сохраняющем небольшую собственную кислотность, доля а-олефинов нормального строения (R H = H2) низка по сравнению с нормальными олефинами, имеющими двойную связь в середине цепи (R H= HR ), и с а-олефинами изостроения (RR = H2). Модифицирование поверхности SIO2 добавками щелочи [0,18—5,3% (масс.) К2О и 0,052—1,14% (масс.) LI2O в расчете на силикагель] заметно ингибировало изомеризацию углеродного скелета. Доля а-олефинов нормального строения при модифицировании поверхности щелочью возрастает до некоторой постоянной величины, приблизительно равной доле а-олефинов в продуктах термического крекинга, а затем начинает снижаться при соответственном изменении содержания (3-, у- и т. и. изомеров (рис. 21). [c.159]

    Приведенные в табл. 2.3 данные, а также усредненные Г. Д. Гальперном [172] результаты исследования СС из 10 нефтей Урало-Поволжья [444, 445] показывают, что преобладающая часть нефтяных тиолов содержит группу — ЗН у вторичных и третичных и меньшая часть — у первичных С-атомов углеродного скелета. Так, в ливийской нефти 2- и З-ЗН-замещенные изомеры составляют 87% от тиолов состава С4Н9ЗН и 63% от тиолов С5Н11ЗН [296]. Р. Д. Оболенцев и др. [446] нашли, что тиолы из изучавшихся ими четырех керосинов содержали в среднем 5% первичных, 75% вторичных и 20% третичных производных. Низшие тиолы из ливийской нефти (С4, С5) содержат большую долю изомеров с линейным строением углеродной цепи, чем структурно родственные им углеводороды [296]. [c.54]

    Среди тиамоноцикланов преобладают соединения с углеродными скелетами, наиболее распространенными среди насыщенных углеводородов (нормального и изопреноидного строения). [c.76]

    Изменения в структуре углеродного скелета свидетельствуют о реакции дегидроконденсации, преимущественно за счет гексамети-леновых колец. Особенно рельефно проявляется такой характер изменения углеродного скелета в смолисто-асфальтеновых веществах в процессах высокотемпературной переработки нефти. Этим и обусловлено различие в свойствах и строении нативных асфальтенов и асфальтенов, выделенных из тяжелых нефтяных остатков, полученных на различных стадиях высокотемпературной переработки нефти. Несмотря на аналогию в строении углеродного скелета, наблюдается резкое качественное различие в элементном составе высокомолекулярных углеводородов нефти и нефтяных смол. Первые имеют чисто углеводородную природу, т. е. полностью состоят из атомов углерода и водорода, вторые относятся к высокомолекулярным неуглеводородным компонентам нефти и, кроме углерода и водорода, содержат в своем составе О, 8, N и металлы, суммарное содержание которых может достигать 10% и более. В высокомолекулярных же углеводородах лишь в случае сернистых и высокосернистых нефтей могут присутствовать более или менее значительные примеси сераорганических соединений, близких по строению углеродного скелета к высокомолекулярным углеводородам. [c.40]

    Уже отмечалось, что состав и строение нефтяных смол и асфальтенов имеют много общего, прежде всего, это сходство элементов структуры углеродного скелета и их элементного состава. В сырых нефтях и в тяжелых остатках от прямой перегонки нефтей значение величин отношения смолы/асфальтены варьирует, как правило, в пределах от 9 1 до 7 3, а в окисленных битумах и тяжелых крекинг-остатках — от 7 3 до 1 1 [6]. Большая физическая и химическая гетерогенность смолисто-асфальтеновых веществ, слабая термическая стабильность и близость структуры и элементного состава их молекул делают крайне трудной задачу их разделения и нахождения четкой границы раздела, если таковая существует. В распределении по молекулярным весам нефтяных асфальтенов и смол есть известное подобие спектру полимергомологов — от олигомеров до высокомолекулярных полимеров. Различие в элементном составе смол и асфальтенов иллюстрируется данными, полученными разными исследователями на обширном материале нефтей, асфальтов и тяжелых нефтяных остатков. Асфальтены, как правило, осаждались н-пентаном и переосаждались из бензольного раствора смолы си-ликагелевые, т. е. выделенные адсорбционной хроматографией на крупнопористом силикагеле. [c.45]

    По мнению В. И. Касаточкина, процесс метаморфизма угля сопровождается упорядочиванием углеродистого вещества, т. е. структуры углеродного скелета иод воздействием двух процессов чисто химического процесса конденсации углерода в форме гексагональных плоских атомных сеток типа графитных базисных углеродоатомных сеток и ориентации этих параллельно расположенных сеток в пакеты с образованием мезоморфных областей упорядоченности углерода. Па рис. 13 представлено строение витрена по В. И. Касаточкпну. Плоские сетки, состоящие из гексагональных карбоциклов (конденсированные структуры из бензольных колец), валентно связаны между собой периферийными молекулярными [c.95]

    В работах одного из авторов было показано, что при проведении каталитического гидрирования асфальтенов в мягких температурных условиях, при удачном выборе катализатора, можно вести процесс с высокой степенью избирательности [26]. В каче- тве катализатора был использован М1-Ренея, успешно использовавшийся для установления строения сераорганических соединений [27, 28]. Конечной целью избирательного каталитического гидрирования асфальтенов являлось осуществление гидрогенолитического разрыва связей С —8, С — О, С — N без нарушения структуры углеродного скелета и переход от гетероциклических соединений нефтп (углеводородов и смол) к углеводородам. [c.126]

    Как отмечает Петров [62], исследовавший зависимость температур плавления и вязкости разветвленных парафиновых углеводородов от строения их углеродного скелета, несимметричные структуры типа триалкилзамещенных метана характеризуются не только низкими температурами застывания, но и склонностью к стеклованию, тогда как углеводороды симметричных структур кристаллизуются. [c.200]

    Строение молекулы сераорганических соединений и прежде всего положение атома серы в углеродном скелете оказывают решающее влияние на скорость и глубину реакции гидрогенолиза. Особое внимание следует обратить на легкость протекания реакцпи в случае дибензилсульфида. Выше мы приводили нриме])Ы ослабления связи С — 3 при наличии в углеводородной части молекулы двойной связи. Из многочисленных работ следует, что дибен.чилсульфнд занимает особое положение. В одной из наших работ [201 ] отмечалось, что [c.380]

    Представление о строении основного углеродного скелета этих двух алкалоидов дает перегонка морфина с цинковой пылью, в результате которой образуется фенантрен (Фонгерихтен и Шреттер). Следовательно, морфин и кодеин являются производными фенантрена. [c.1111]

    При удачном выборе избирательно действующих катализаторов гидрогенизации и ирп проведении этой реакции в достаточно мягких условиях, исключающих осложнения за счет побочных и параллельных реакций, метод избирательного каталитического гидрогенолиза может быть с большим успехом использован для выяснения строения сераорганических соединений нефти. Так, гидрогенолиз ряда сераорганических соединений над палладиевым катализатором, отложенным на окиси алюлпшия, позволяет удалить полностью всю серу, входящую в различные сераорганические соединения [200]. Варьируя температуру, авторы во всех исследованных соединениях полностью удалили серу при этом углеродный скелет полученных продуктов сохранял первоначальную структуру. Продукты индентп-фицировали с помощью газожидкостной хроматографии. [c.390]

    Избирательное каталитическое гидрирование особенно широко применяется для доказательства строения сераорганических соединений ряда бензтиофена и дибензтиофена. Наиболее часто используют для этих целей скелетный никелевый катализатор (A i Ренея) при низких температурах (50—150° С) [106 1. В этих условиях удается практически полностью осуществить разрыв связей С—S с последующим связыванием никелем серы, выделяющейся в виде сероводорода. В большей или меньшей степени идет при этом и насыщение водородом двойных связей в ароматических кольцах, но сравнительно мало затрагиваются простые связи С—С. Следовательно, нрп избирательном каталитическом гидрировании сернистых соединений происходит отщепление атома серы при сохраненип углеродного скелета исходных молекул, т. е. осуществляется переход от сераорганических соединений к соответствующим углеводородам. Установление строения полученных в этих условиях углеводородов является поэтому прямым ответом на вопрос о химической природе содержащихся в нефти сернистых соединений. Чем ниже температура гидрирования и продолжительность процесса, тем меньше задеваются двойные связи в бензольных кольцах. [c.417]

    Близкая аналогия в характере инфракрасных спектров высокомолекулярных бпциклоароматическпх конденсированных углеводородов и смол одной и топ же нефтп служит прямым доказательством существования генетической связи между углеводородной п смолистой частями нефти, т. е. общности в строении углеродного скелета их. Было показано также, что высокомолекулярные моноциклические ароматические углеводороды, выделенные из различных нефтей (ромашкинской и радченковской), не различаются между собой ио [c.478]

    Предполагают, что последние, как и молекулы алканов, имеют тетраэдрическое строение со стандартными значениями длин связей и углов. С—Н-связи с ненасыщенным атомом углерода (например, с атомом С(2) в -СзНб или с атомом С(3) в Н--С3Н,) расположены плоскости углеродного скелета. [c.96]

    Разработан метод установления углеродного скелета серу-, кислород- и азотсодержащих соединений, основанный на гидрировании в присутствии палладиевого или платинового катализатора [143]. При гидрогенолизе образуется соответственно сероводород, вода, аммиак и углеводороды, газохроматографическим анализом которых определяют строение углеродного скелета гетероатомных соединений. Так, при гидрировании этилбензилсульфида кроме сероводорода образуются только этан и толуол, из метнлпропил-сульфида — метан и пропан и т. д. [144]. [c.127]

    В последние годы возрос интерес к исследованию реликтовых высококипящих моноаренов. Ароматизация исходных биологических веществ на природных катализаторах незначительно изменяет строение углеродного скелета. Поэтому исследование строения моноаренов важно для понимания механизма образования углеводородов нефти. [c.228]

    Итак, из среднедистиллятных нефтяных фракций и топлив могут быть выделены и индивидуализированы не только карбоновые кислоты и фенолы, но и продукты автоокисления углеводородов спирты и кетоны. Эти соединения отличаются своеобразной химической структурой — имеют циклическое строение с боковыми ненасыщенными цепями. При автоокислении углеродный скелет углеводородов не изменяется. Выделенные карбоновн1е кислоты представляют собой насыщенные соединения циклической структуры. Их молекулярный вес значительно больше, чем углеводородов, из которых они извлечены. Общие характеристики кислородных соединений нефтепродуктов, полученных различными технологическими методами из нефтей различных месторождений, очень схожи. [c.255]

    Высшие непредельные карбоновые кислоты, например олеиновая, легко присоединяют окись углерода и водород и после восстановления дают оксиметилкарбоновтле кислоты. Однако последпие представляют смесь изомеров с различным положением оксиметильной группы [8]. О влиянии строения олефинов с разветв [енным углеродным скелетом на их поведение при реакции гидроформилирования см. гл. XI. [c.523]

    Изомеризация парафиновых и олефиновых углеводородов имеет большое практическое значение, так как превращение углеродного скелета нормального строения в углеродный скелет изостроенйя [c.581]


Смотреть страницы где упоминается термин Углеродные скелеты, строение: [c.422]    [c.456]    [c.138]    [c.152]    [c.45]    [c.25]    [c.373]    [c.446]    [c.527]    [c.33]    [c.129]    [c.207]    [c.852]    [c.886]    [c.1109]   
Органическая химия (1964) -- [ c.89 ]

Органическая химия (1964) -- [ c.89 ]




ПОИСК





Смотрите так же термины и статьи:

углеродного скелета



© 2025 chem21.info Реклама на сайте