Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сопряжение химических реакций с переносом вещества

    Термодинамическое сопряжение может наблюдаться не только для химических реакций, но и для других термодинамических процессов (переноса вещества, теплоты и т.п.). Наличие верхнего допустимого предела энергетической эффективности сопряжения не является, естественно, свидетельством того, что сопряжение в системе реально имеет место. Как уже указывалось, необходимым условием сопряжения химических брутто-реакций является наличие как минимум одного общего промежуточного компонента (интермедиата). Нахождение истинной величины сопряжения — отдельная и обычно очень конкретная задача (см. разд. 18.4). [c.302]


    Сопряжение химических реакций с переносом вещества [c.322]

    Клетка, организм представляют собой молекулярные, т. е. химические машины, функционирующие на основе точно сбалансированных взаимодействий нейтральных молекул и ионов. Эти взаимодействия реализуются в открытых системах и определяют термодинамическое сопряжение химических реакций с транспортом вещества. В клетку и из клетки переносятся нейтральные молекулы, ионы и электроны. [c.608]

    В открытых системах могут устанавливаться простые обратные связи в силу сопряжения констант скоростей химических реакций внутри системы, а также констант переноса и обмена субстратов и продуктов с внешней средой. Эти обратные связи устанавливаются при участии значительных количеств вещества и энергии. Управление же на основе информации характеризуется избирательным контролем при помощи очень малых масс или энергий, так что энергетическая характеристика регуляторного взаимодействия отступает на второй план. [c.244]

    При решении упомянутой задачи могут появиться осложнения, вызванные совместной адсорбцией веществ О и К [см. уравнение (1)] и последовательными стадиями переноса заряда, а также сопряженными химическими реакциями. Влияние совместной адсорбции будет минимальным при малых степенях заполнения, когда справедлива изотерма Генри, но сложность механизма реакции может оказаться камнем преткновения. Подробная математическая обработка поляризационных кривых в случае сложных процессов, возможно, не даст результатов, так как обратный процесс анализа экспериментальных данных редко приводит к однозначному ответу. Однако можно получить информацию относительно механизма, исследуя влияние двойного слоя (см. раздел 3), а также применяя методы, описанные в гл, VIП. [c.319]

    В методе фарадеевского импеданса критерием специфической адсорбции электрохимически активного вещества является величина угла сдвига фаз между синусоидальным током и напряжением — ф. Обратимый электродный процесс без адсорбции компонентов реакции характеризуется величиной ф = 45°. Различные медленные стадии (перенос заряда, сопряженные химические реакции) приводят к уменьшению фазового утла ф 45°), и только в случае специфической адсорбции, благодаря которой увеличивается поверхностная концентрация электрохимически активных веществ, получается ф 45°. [c.163]


    Обычно условия, для которых создается теория переменнотоковой полярографии, те же, что и в обычной постояннотоковой полярографии в частности, используют фоновый электролит в концентрации, существенно превосходящей концентрацию исследуемого электрохимически активного вещества (см. гл. 2). Такие условия, как и в случае предварительно рассмотренных полярографических методов, позволяют решить проблему для обычных, скоростьопределяющих стадий, которыми могут быть диффузия, гетерогенный перенос электрона, гомогенные химические реакции, сопряженные со стадией переноса электрона, заряжение двойного электрического слоя и др. [c.430]

    В то время как механизм пассивного транспорта, как правило, известен, механизм сопряжения транспорта вещества с обеспечивающей этот процесс энергией химической реакцией остается не ясным. Вероятно, при функционировании Na K " -АТРазы происходит временное фосфорилирование белка переходящими с АТР-ионами фосфата. Это в свою очередь вызывает изменение конформации фер.мента, приводящее к переносу натрия из клетки в межклеточную жидкость, а калия в противоположном направлении (рис. 99). [c.232]

    Рассмотрим для примера анилин. Его длинноволновая полоса, по нашей интерпретации, возникает при переносе заряда с уровня группы NH2 на уровень бензольного кольца, т. е. фактически эта полоса связана с 2 0-электронами группы NH2. Когда образуется комплекс со спиртом вследствие водородной связи между азотом группы NH2 и водородом гр уппы ОН спирта, то полоса испытывает голубое смещение на 80 A. Выход из сопряжения 2р-электронов атома азота аминогруппы под влиянием водного раствора НС1 (0,1 N) приводит к полному исчезновению полосы 2800 А (спектр солянокислого анилина похож на спектр бензола). Следовательно, образование комплекса между анилином и спиртом является началом перестройки электронной оболочки, которая осуществляется при химической реакции солеобразования. Другая картина наблюдается для анилина, растворенного в эфире, с которым также образуется комплекс с водородной связью, но другого типа между атомом водорода аминогруппы и кислородом эфира. В этом случае получается красное смещение первой полосы поглощения. Аналогичная картина наблюдается для фенола, о-аминофенола и других веществ, содержащих подобные группы в протонодонорных и протоноакцепторных растворителях (табл. 3). [c.242]

    Н. А. Шиловым (1905). Явление сопряжения реакций было названо химической индукцией. Причины его лежат в образовании промежуточных веществ, возникающих при первичной реакции и осуществляющих перенос индуктивного влияния первичной реакции на вторичную. Как правило, сопряженные реакции относятся к цепным реакциям. После образования первичного радикала под действием индуктора развивается цепь превращений молекул акцептора уже без участия молекул индуктора. [c.195]

    Активный транспорт реализуется в результате сопряжения диффузионных потоков с экзергоническими реакциями, проходящими в толще мембраны. Перенос вещества пронсходит за счет свободной энергии, выделяемой при химических реакциях. Как правило, это энергия гидролиза АТФ. Указанное сопряжение не тривиально. Как уже говорилось (см. с. 312), коэффициенты сопряжения скалярных и векторных потоков в изотропной системе равны нулю, согласно принципу Кюри. Сопряжение [c.346]

    Указанные виды сопряжения каталитических процессов могут проявляться как порознь, так и в сочетаниях друг с другом. При сопряжении реакций на мембранном катализаторе реализуется новое состояние, которое выгодно отличается от термодинамического равновесия, достигаемого при тех же условиях, но без переноса через катализатор энергии и вещества — продукта одной реакции и исходного вещества другой реакции. На мембранных катализаторах перенос химической энергии, указанный в [107], сопровождается минимальным рассеянием энергии и обе реакции идут в термодинамически открытых системах. [c.122]

    Одним из характерных химических свойств хинонов является их склонность к реакциям присоединения . Типичное для хинонов присоединение нуклеофильных агентов к атомам углерода можно рассматривать как присоединение к сопряженной цепи, включающей группу СО и С=С-связи хиноидного ядра. В этом отношении хиноны подобны а,Р-ненасыщенным кетонам и их винилогам. Своеобразие присоединения к хинонам состоит во вторичных превращениях, обусловленных тенденцией к ароматизации. Первоначально образующиеся при нуклеофильной атаке продукты присоединения стабилизируются далее путем отщепления вытесняемой группы в виде аниона (нуклеофильное замещение) или путем прототропного перехода в замещенный гидрохинон. Последний является конечным продуктом реакции, если вступающая группа обладает электроноакцепторными свойствами и повышает окислительно-восстановительный потенциал системы хинон — гидрохинон. В тех случаях, когда заместитель имеет электронодонорный характер, происходит дальнейшее окисление частью исходного хинона, восстанавливающего в гидрохинон. Применение дополнительного окислителя позволяет регенерировать исходное вещество и довести процесс до полного превращения в замещенный хинон. Конечный результат при этом состоит в замене атома водорода в молекуле хинона и часто интерпретируется как нуклеофильное замещение с удалением гидрид-иона, облегчаемое участием окислителя Поскольку механизм, допускающий гид-ридное перемещение, в данном случае не доказан, вопрос о том, рассматривать ли вторичное превращение продукта присоединения в замещенный хинон как перенос электронов с последующим переходом протона или как отщепление гидрид-иона, сопровождающееся его окислением, остается открытым. [c.5]


    Непористые реакционно-диффузионные мембраны отличаются от прочих химической формой связи компонентов разделяемой смеси и исходного материала мембраны. Химические реакции приводят к образованию новых веществ, участвующих в транспорте целевого компонента. Массоперенос компонентов разделяемой газовой смеси определяется не только внешними параметрами и особенностями структуры матрицы, но и химическими реакциями, протекающими в мембране. В подобных системах за счет энергетического сопряжения процессов диффузии и химического превращения возможно ускорение или замедление мембранного переноса, в определенных условиях возникает активный транспорт, т. е. результирующий перенос компонента в направлении, противоположном движению под действием градиента химического потенциала этого компонента. В сильнонеравновесных мембранных системах могут формироваться структуры, в которых возникают принципиально иные механизмы переноса, например триггерный и осциллирующий режимы функционирования мембранной системы. Обменные процессы такого рода обнаружены в природных мембранах, но есть основания полагать, что синтетические реакционно-диффузионные мембраны в будущем станут основным типом разделительных систем, в частности, при извлечении токсичных примесей из промышленных газовых выбросов. [c.14]

    Организм, клетка — химические машины, функционирующие в результате химических реакций и переноса вещества между клеткой и окружающей средой, а также внутри клетки. Перенос имеет определенное направление, перпендикулярное к клеточной и внутриклеточным мембранам. Поток вещества есть вектор, в то же время скорость химической реакции — скаляр. Как уж сказано (с. 312), прямое сопряжение скалярного и векторнога процессов невозможно в изотропной системе в силу принципа Кюри. Невозможно оно и в анизотропных системах, имеющих центр симметрии. Однако биологические системы, в которых сопрягаются химические реакции и диффузия, а именно мембраны, построены из хиральных молекул, лишенных плоскости н центра симметрии ( 2.7). Мембраны анизотропны. В таких системах в принципе возможно прямое сопряжение, векторные коэффициенты — могут отличаться от нуля. Теория прямого сопряжения химии и Д7гффузип в мембранах, непосредственно учитывающая их анизотропию и хиральность, пока не развита. Можно представить себе, например, перемещение неких участников реакции вдоль винтового канала в мембране, в котором расположены центры. Тогда течение реакции будет различным для веществ, поступающих с разных концов канала. К тому же результату приведет рассмотрение симметричного канала, в котором регулярно расположены асимметричные, т. е. хиральные, реакционные центры. Однако пока нет оснований утверждать, что эти эффекты значительны. [c.322]

    Известен механизм транспорта, получивший название облегченной диффузии, требующий для переноса веществ через мембрану участия транслоказ. Перенос веществ в этом случае происходит по градиенту их концентрации и не требует энергетических затрат. Этот механизм транспорта не получил широкого распространения у прокариот. Основным механизмом избирательного переноса веществ через ЦПМ прокариот является активный транспорт, позволяющий накачивать в клетку молекулы и ионы против их концентрационных и электрических градиентов. Этот процесс, так же как и облегченная диффузия, протекает при участии локализованных в ЦПМ переносчиков белковой природы с высокой специфичностью к субстрату, но в отличие от облегченной диффузии для движения против электрохимического градиента требует затрат метаболической энергии. Транспорт такого рода должен быть поэтому сопряжен с реакциями, продуцирующими энергию в химической или электрохимической форме. [c.51]

    Триггерные свойства ферментативных систем играют решаюшую роль в ре-гулировании внутриклеточных процессов метаболизма, а также в процессах клеточной дифференциации, когда при делении появляются дочерние клетки, качественно отличные от клеток предшественников. В настоящее время хорошо известны также триггерные свойства ферментативных систем, осуществляющих транспортную функцию. В частности, такие явления были обнаружены при изучении переноса растворов через пористые мембраны. Система мембранного переноса, сопряженная с химической реакцией, в которой участвует транспортируемое соединение, обладает триггерными свойствами. Предположим, что химический процесс катализируется ферментом, свойства которого, в свою очередь, зависят от концентрации субстрата (транспортируемое вещество) или продукта реакции. Такая зависимость может быть основана на изменении конформационного состояния фермента при некоторых критических концентрациях названных соединений. В этих условиях вместе с конформационным состоянием фермента будут меняться его активность и, следовательно, скорость химического процесса. [c.69]

    Оказалось, что в ядрах, где сосредоточена почти вся клеточная ДНК, идет как ее биосинтез, так и новообразование всех видов РНК. В митохондриях интенсивно протекают процессы биологического окисления, сопряженного с образованием важнейшего макроэргического соединения—аденозинт-рифосфорной кислоты (АТФ), вследствие чего их считают энергетическими центрами клетки. Функция лизосом сводится к осуществлению процессов деструкции биополимеров при участии разнообразных гидролитических ферментов, которыми они очень богаты. Рибосомы, представляющие по современным данным механохимические машины молекулярных размеров, обеспечивают биосинтез всех клеточных белков. Мембраны эндоплазматиче-ского ретикулума делят клетку на ряд,отсеков (компартменты), обеспечивая компартментализацию (обособленность) ряда химических процессов в ней, избирательный перенос веществ из одной части клетки в другую, равно как и протекание ряда химических реакций при участии ферментов, встроенных в мембраны эндоплазматической сети. Центриоли имеют отношение к такому важнейшему процессу, как перемещение хромосом в клетке при ее делении. [c.21]

    Связывающие белки подошли бы на роль подвижных переносчиков в процессе облегченной диффузии, однако большая часть выделенных белков принадлежит, по-видимому, к системам активного транспорта, и их функция в процессах переноса до сих пор окончательно не установлена. Согласно одному из предположений, связывающий белок обладает сильным сродством к транспортируемому веществу (субстрату) и прочно связывается с ним на наружной поверхности летки. Образовавшийся комплекс белок—субстрат далее диффундирует к внутренней i TopOHe мембраны. Здесь в результате процесса, сопряженного с самопроизвольно протекающей экзергонической реакцией, например с гидролизом АТР, конформация бел1ка меняется таким образом, что его сродство к субстрату уменьшается. В результате транспортируемое вещество переходит в клетку, а связывающий белок диффундирует обратно к наружной поверхности. Там его конформация возвращается к исходной, вероятно, под влиянием химических воздействий. [c.359]

    В. В. Марковниковым, объяснение явлению двойственного реакционного поведения химических веществ А. Н. Несмеянов находит во взаимном влиянии атомов в молекуле (153J. Он считает, что наряду с сопряжением двойных связей, которое наглядно проявляет себя в реакциях присоединения, происходящих чаще всего по типу 1—4, существует явление сопряжения простых связей или простой и двойной связей. Следствием этого является перенос реакционного центра молекул по системе сопряженных связей в процессе реакций  [c.206]


Смотреть страницы где упоминается термин Сопряжение химических реакций с переносом вещества: [c.29]    [c.446]    [c.509]    [c.45]    [c.30]    [c.21]    [c.284]    [c.45]    [c.141]    [c.102]   
Смотреть главы в:

Биофизика -> Сопряжение химических реакций с переносом вещества




ПОИСК





Смотрите так же термины и статьи:

Сопряжение

Сопряжение химических реакций

Химический ое не ная химическая вещества



© 2025 chem21.info Реклама на сайте