Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамика, второй закон статистическая

    Границы применимости второго закона. Статистический характер второго закона термодинамики приводит к заключению, что увеличение энтропии в самопроизвольных процессах указывает на наиболее вероятные пути развития процессов в изолированной системе. Невозможность процесса следует понимать лишь как его малую вероятность по сравнению с обратным. Поэтому второй закон термодинамики в отличие от первого нужно рассматривать как закон вероятности. Он тем точнее соблюдается, чем больше размеры системы. Для систем, состоящ,их из громадного числа частиц, наиболее вероятное направление процесса практически является абсолютно неизбежным, а процессы, самопроизвольно выводящие систему из состояния равновесия, практически невозможны. Так, самопроизвольное изменение плотности 1 см воздуха в атмосфере с отклонением на 1% от ее нормальной величины может происходить лишь один раз за 3-10 лет. Однако для малых количеств вещества флуктуации плотности отнюдь не невероятны, а наоборот, вполне закономерны. Для объема воздуха 1 10" см повторяемость однопроцентных флуктуаций плотности составляет всего 10" с. Таким образам, действие второго закона нельзя распространять на микросистемы. Но также неправомерно распространять второй закон на вселенную. Отсюда следует, что общая формулировка законов термодинамики, данная Клаузиусом, — энергия мира постоянна, энтропия мира стремится к максимуму — во второй ее части неправильна. Неправильно и вытекающее из нее заключение о возмол<-ности тепловой смерти вселенной , так как второй закон термодинамики применим лишь к изолированной системе ограниченных масштабов. Вселенная же существует неограниченно во времени и пространстве. [c.103]


    Первый закон термодинамики справедлив и для обычных систем, состоящих из большого числа частиц, и для систем из небольшого числа частиц, и для отдельных частиц. Второй же закон носит статистический характер и относится исключительно к системам из очень большого числа частиц, так как только к таким системам строго применимы законы статистики. Если же рассматривать системы из не очень большого числа частиц, то выводы из второго закона не могут быть строго применимы к ннм. К системам же из малого числа частиц второй закон не относится. [c.210]

    Энтропия и вероятность. Статистический характер второго закона термодинамики. Второй закон термодинамики можно назвать законом возрастания энтропии при самопроизвольном процессе в изолированной системе. В связи с этим очень важно выяснить физические причины необратимости реальных процессов и возрастания энтропии. [c.98]

    Установление статистического характера второго закона термодинамики является великой заслугой Л. Больцмана, объяснившего таким путем противоречие между обратимостью механического движения и необратимостью и направленностью реальных физических и химических процессов эта направленность является следствием молекулярного строения материального мира. [c.106]

    Статистический характер второго закона термодинамики [c.102]

    Максвелл, Больцман и Гиббс установили связь второго начала термодинамики с молекулярно-кинетическими представлениями, что привело к статистическому толкованию второго закона. Именно статистический подход позволил вскрыть специфическую особенность тепловых явлений, определить их качественное своеобразие и характеризовать их необратимость. При таком подходе стали совершенно ясными пределы применимости второго закона термодинамики. [c.91]

    В отличие от первого закона термодинамики, второй закон обладает более ограниченной областью применения. Он носит статистический характер и применим поэтому лишь к системам из большого числа частиц, т. е. таким, поведение которых может быть выражено законами статистики. [c.206]

    Его также называют третьим законом термодинамики в формулировке Планка. Однако целесообразность так называть положение (П1, 29) часто оспаривают, так как оно по своему значению уступает первым двум законам термодинамики. Это положение тесно связано с квантово-статистическим обоснованием второго закона термодинамики и вероятностной трактовкой энтропии (см. стр. 107). [c.96]


    Таким образом, утверждение, по которому несамопроизвольные (отрицательные) процессы не могут быть единственным результатом совокупности процессов, оказывается нестрогим, а отрицательные процессы в макроскопических системах оказываются не невозможными, а крайне мало вероятными событиями. Второй закон термодинамики является, следовательно, не абсолютным законом природы подобно первому закону, а статистическим законом, который соблюдается с высокой степенью точности для значительных количеств молекул и тем менее применим, чем меньше размеры системы, являющейся объектом изучения. [c.105]

    В работах Больцмана, Смолуховского и других ученых показан статистический характер второго закона термодинамики и количественно изучены наблюдаемые отклонения от этого закона. Этими работами окончательно показана несостоятельность антинаучной идеи тепловой смерти вселенной, высказанной Клаузиусом. [c.106]

    Выводы Клаузиуса о тепловой смерти вселенной незакономерны, так как термодинамические свойства конечной изолированной системы распространялись им иа вселенную, безграничную в пространстве и времени. Работы Больцмана и других ученых, установивших ограниченный статистический характер второго закона термодинамики, показали возможность и необходимость наличия во вселенной любых по величине отклонений от требований второго закона для равновесных систем. Само представление о движении вселенной (как целого) к равновесию незакономерно. [c.106]

    Гл. 15-19 образуют третий учебный цикл, в котором рассматриваются вопросы термодинамики и химическое равновесие. Материал, касающийся первого и второго законов термодинамики, не изменился по сравнению с прежними изданиями книги, но теперь он разбит на три главы, что облегчит усвоение материала. Статистическое описание энтропии дано в более простой форме. Добавлена новая, 18-я глава по фазовым равновесиям. Поскольку этот материал излагается с привлечением количественного описания, он часто оказывается трудным для начинающих студентов в связи с этим мы значительно увеличили число примеров в тексте, пересмотрели имевшиеся упражнения и добавили новые. [c.10]

    Понятие термодинамической вероятности позволяет уточнить содержание второго закона термодинамики. В любом процессе изменяются микросостояния и термодинамическая вероятность системы. В статистической термодинамике предполагается, что процесс, приближающий систему к состоянию равновесия, соответствует переходу от менее вероятных состояний к более вероятным. Процесс, удаляющий систему от состояния равновесия, с точки зрения статистической термодинамики не является невозможным, а просто менее вероятным по сравнению с процессом, ведущим к равновесию. Таким образом, строго обязательная направленность самопроизвольных процессов, утверждаемая классической термодинамикой, заменяется представлением о статистическом характере второго закона термодинамики. Термодинамические утверждения, носящие категорический характер, например об обязательном возрастании энтропии в ходе самопроизвольного процесса в изолированной системе, приобретают смысл утверждений, определяющих наиболее вероятный ход процесса. [c.90]

    Статистическая природа второго закона термодинамики была впервые показана в конце XIX века в работах Л. Больцмана, Дж. Гиббса, Н. Н. Пирогова и М. Смолуховского. [c.210]

    В промежуточном случае (т. е. для систем, состоящих из не столь большого числа частиц, чтобы статистические выводы имели для них характер законов) выводы из второго. закона термодинамики, [c.211]

    Второй закон термодинамики позволяет определить направление протекания процессов в природе и технике по знаку изменения термодинамических функций и имеет статистическое толкование. [c.6]

    Любая макроскопическая система состоит из очень большого числа частиц. К такой системе применимы законы теории вероятности. Если с этих позиций подходить к рассмотрению естественных процессов, то легко убедиться, что любой самопроизвольный процесс протекает в направлении, при котором система переходит из менее вероятного состояния в более вероятное. Этот вывод может также служить одной из формулировок второго закона термодинамики. Смешение газов в результате диффузии, переход теплоты от более горячего тела к более холодному и т. п. непосредственно связаны с вероятностью состояния исследуемой системы. Статистический характер второго закона термодинамики был раскрыт во второй половине XIX в. благодаря работам Больцмана, Гиббса, Смолуховского и др. [c.219]

    Согласно воззрениям Больцмана и Планка второй закон термодинамики — закон возрастания энтропии в замкнутой системе — является не абсолютным законом, но законом статистическим. Возрастание энтропии или приблизительное ее постоянство при достижении состояния термодинамического равновесия — выражение статистических закономерностей, проявляющихся в системах, состоящих из очень большого числа частиц. Наиболее вероятным будет состояние термодинамического равновесия в замкнутой системе, но и при достижении этого состояния возможны небольшие флуктуации — отклонения энтропии и других термодинамических величин от их значений в состоянии термодинамического равновесия. Но эти флуктуации, вычисляемые по формуле [c.291]


    Согласно классической теории ФП [14, 15] причиной возникновения того или иного упорядочения является изменение соотношения между вкладами внутренней энергии Е и энтропии 5 в свободную энергию Р=Е-Т8. Основным принципом статистической физики, вытекающим нз второго закона термодинамики, является минимальность таких термодинамических потенциалов, как свободная энергия, в состоянии равновесия. Поэтому в равновесии Р минимально относительно всех внутренних параметров системы, в частности относительно степени упорядоченности. Энтропия характеризует величину беспорядка, хаотичности в системе, и при переходе от неупорядоченной структуры к упорядоченной она уменьшается. В то же время энергия составляющих систему частиц минимальна при их упорядоченном, а не хаотическом расположении. Таким образом, в свободной энергии вклад слагаемого с внутренней энергией описывает тенденцию к упорядоченности, а энтропийного слагаемого -к неупорядоченности, и выбор системой равновесного состояния с минимальным / определяется конкуренцией между вкладами. С понижением температуры степень хаотичности и энтропия уменьшаются, вклад энтропийного слагаемого стремится к нулю, и свободная энергия определяется внутренне энергией Е. Поэтому при низких температурах все равновесные системы должны быть так или иначе упорядочены. Таким образом, необходимость тех или иных ФП упорядочения при понижении температуры следует нз общих законов термодинамики. Современной теории ФП предшествовала теория Л.Д Ландау. Основные положения теории Ландау [13]  [c.22]

    Броуновское движение тесно связано с флуктуациями параметров системы, характеризующих ее состояние равновесия, по отношению к их среднему значению. Например, неполная взаимная компенсация импульсов, получаемых коллоидной частицей с разных сторон, представляет собой не что иное, как колебание давления. Флуктуации — это спонтанные колебания какого-либо параметра вблизи его среднего значения в достаточно малом объеме. Они свидетельствуют о том, что второй закон термодинамики, согласно которому эти параметры должны иметь постоянное значение, отвечающее экстремуму характеристических термодинамических функций (энтропии, энергии), не совсем точен, он справедлив только для достаточно больших объемов. Другими словами, второй закон термодинамики имеет статистический характер и, как всякий статистический закон, справедлив только для систем, состоящих из достаточно большого числа частиц. Таким образом, броуновское движение подтверждает высказанную Больцманом идею о вероятностном характере второго закона термодинамики, в чем и состоит, по крайней мере в рамках современных представлений, его качественное отличие от первого закона. [c.55]

    Обе приведенные формулировки второго начала термодинамики fie связаны с какими-либо конкретными представлениями о строении материи. Однако, как впервые показал Л. Больцман (1896), содержание второго закона обусловлено особенностями строения, а именно молекулярной природой вещества. Иными словами, второе начало (в отличие от первого) относится исключительно к системам из большого числа частиц, т. е. таким, поведение которых может быть охарактеризовано статистическими величинами, например температурой и давлением. В связи с этим с точки зрения молекулярно-кинетических представлений второе начало термодинамики можно сформулировать следующим образом все процессы, происходящие в природе, стремятся перейти самопроизвольно от состояния менее вероятного к состоянию более вероятному. Для молекул наиболее вероятным является беспорядочное, хаотичное движение, т. е. тепловое движение. Работа характеризуется более или менее упорядоченным движением частиц, каковое является менее вероятным. Отсюда самопроизвольный переход работы в теплоту можно рассматривать как переход молекулярной системы от упорядоченного движения частиц к более вероятному — хаотическому. [c.65]

    Таким образом, второй закон термодинамики не абсолютный закон природы, а статистический закон, который соблюдается с высокой степенью точности для значительных количеств молекул и применим тем в меньшей степени, чем меньше размеры изучаемой системы. [c.79]

    Следует отметить, что, как показывает содержание предыдущего параграфа, критерий направления процессов и постулат о существовании и возрастании энтропии в основных важнейших чертах вытекают из молекулярно-статистических соображений. Поэтому (а также на основании изложенного выше) не следует считать проблему аксиоматики второго закона термодинамики (т. е. проблему формулировки его в совершенно общей форме в пределах члсто термодинамического метода и оторванно от методов и нoJЮжeний статистической физики) существенной научной проблемой. Учитывая это, лишь кратко остановимся на одном виде аксиоматики второго закона термодинамики, предложенной в близких формах Шиллером (Киев, 1895) и Каратеодори (1911). Их аксиоматика не связана с тепловыми машинами и коэффициентом полезного действия последних. [c.109]

    При недостаточно критическом применении второго закона термодинамики из него можно сделать принципиально неправильный вывод. Согласно второму закону, в изолированной системе во всех обратимых- процессах энтропия не претерпевает изменений, а в необратимых только возрастает. Поэтому, если течение необратимых процессов не исключено, то энтропия такой системы может только возрастать, и это возрастание должно сопровождаться постепенным выравниванием температуры различных частей системы. Если рассматривать вселенную в целом как систему изолированную (не вступающую ни в какое-взаимодействие с другой средой), то можно заключить, что возрастание энтропии должно привести в конце концов к полному выравниванию температуры во всех частях вселеггной, что означало бы, с этой точки зрения, невозможность протекания каких-нибудь процессов и, следовательно, тепловую смерть вселенной . Такой вывод, впервые четко сформулированный в середине XIX в. Клаузиусом, является идеалистическим, так как признание конца существования (т. е. смерти ) вселенной требует признаиид и ее возникновения. Статистическая природа второго начала термодинамики не позволяет считать его универсально применимым к системам любых размеров. Нельзя утверждать также, что второй закон применим к вселенной в целом, так как в ней возможно протекание энергетических процессов (как, например, различные ядерные превращения), на которые термодинамический метод исследования но может механически переноситься. В определенных видах космических процессов происходит возрастание разности температур, а не выравнивание их. [c.220]

    По мере возрастания числа подобных микроскопических изменений модель явления становится отчетливее и появляется все большая возможность описания и предсказания макроскопических процессов. Мы говорим, что эти микроизменения являются статистическими по природе. Изучение и объяснение таких явлений представляет собой один из краеугольных камней физической науки и фактически объясняет причины, по которым действует второй закон термодинамики ведь только в связи с указанными процессами можно говорить [c.258]

    Наибольшая оптическая активность свойственна только живому веществу. В неживой природе возникновение и сохранение ассиметрических соединений или систем с преобладанием одной из эпантиоморфных форм термодинамически очень мало вероятно. Оптически активная система самопроизвольно стремится к состоянию термодинамического равновесия, характеризуемого или отсутствием вообще ассиметрических соединений, или равными концентрациями правого и левого изомера. Чем дальше во времени отстоит данная система от состояния живого вещества, тем статистически менее вероятно сохранение в ней ассиметрии. Приводимые выше данные наглядно иллюстрируют строгое вы-полпение второго закона термодинамики в природе. [c.20]


Смотреть страницы где упоминается термин Термодинамика, второй закон статистическая: [c.45]    [c.36]    [c.105]   
Физика и химия твердого состояния органических соединений (1967) -- [ c.17 ]




ПОИСК





Смотрите так же термины и статьи:

Закон второй

Закон термодинамики

Закон термодинамики второй

Термодинамики второй



© 2025 chem21.info Реклама на сайте