Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никелевые сплавы применение

    Имеются данные о межкристаллитной коррозии никелевого сплава с 15 % Сг и 6 % Ре -(инконель 600) в воде при 350 °С или паре при 600—650 °С [21], а также стабилизированной нержавеющей стали 18-8 в растворе гидроксида натрия (pH = И) при 280 °С [26]. Эти сведения представляют особый интерес ввиду широкого применения инконеля 600 и нержавеющих сталей в качестве конструкционных материалов для ядерных энергетических установок. Загрязнение воды следами растворенного кислорода, едким натром или свинцом (при протечке в трубных [c.308]


    Обычная толщина стенки труб равна 1,245 мм. При применении пресной воды обычно используют сплавы меди, такие, как морская латунь (70% меди, 29% цинка и 1% олова). Трубы конденсаторов, охлаждаемых морской водой, обычно делают из никелевых сплавов, таких, как монель-металл. В некоторых случаях выбор материала бывает обусловлен необходимостью минимального загрязнения конденсата [61. [c.250]

    Ценные свойства проявляют медно-никелевые сплавы. Они имеют серебристо-белый цвет, несмотря на то что преобладающим компонентом в них является медь. Сплав мельхиор (массовая доля никеля 18—20%) имеет красивый внешний вид, из него изготавливают посуду и украшения, чеканят монеты. В сплав нейзильбер кроме никеля и меди входит цинк. Этот сплав используется для изготовления художественных изделий, медицинского инструмента. Медно-никелевые сплавы константан (40% никеля) и манганин (сплав меди, никеля и марганца) имеют высокое электрическое сопротивление. Их используют в производстве электроизмерительных приборов. Характерной особенностью всех медно-никелевых сплавов является их высокая стойкость к коррозии. Широкое применение в машиностроении, химической промышленности, в производстве бытовых товаров нашли латуни — сплавы меди с цинком (массовая доля цинка до 50%). Латуни — дешевые сплавы с хорошими механическими свойствами, легко обрабатываются. Для придания латуням особых свойств в них часто добавляют алюминий, никель, кремний, марганец и другие металлы. [c.251]

    Ад и Аи находят применение в радиоэлектронике и электротехнике, идут на изготовление украшений и предметов домашнего обихода. Ад и Аи используются в качестве катализаторов в различных органических синтезах. Ag применяется в реактивной и космической технике, в производстве зеркал оптических приборов. Высокая электропроводность и прочность обусловливают использование Си для изготовления электропроводов. Широко применяются сплавы меди (латунь, бронза, медно-никелевые сплавы). [c.408]

    В процессе эксплуатации бензиновых кожухо-трубчатых конденсаторов с трубками, изготовленными из монель-металла, выяснилось, что с экономической точки зрения целесообразно применение никелевого сплава при переработке агрессивных сернистых нефтей. Если трубчатые пучки из монель-металла в этих условиях служат (по данным Суэцкого нефтеперерабатывающего завода) 450 дней, то аналогичные трубки из алюминиевой латуни в этих условиях служат не более 300 дней [188]. [c.161]


    Кроме того, применение никелевых сплавов обеспечит большую надежность прп эксплуатации технологического оборудования укрупненных высокопроизводительных установок. [c.162]

    Экстракционно-фотометрическим методом с применением бриллиантового зеленого определяют Sb в железе, чугуне, сталях и сплавах на основе железа [408, 1074, 1351], индиевых сплавах [661, 662], кадмии и его солях [568], меди и ее сплавах [393, 408, 649, 686], минералах [1549], мышьяке [364], никелевых сплавах [686], оловянных рудах и продуктах их обогащения [1063], осадочных породах [1550], почвах [1549, 1550], продуктах свинцово-цинкового производства [626], сточных водах заводов цветной металлургии [784], титане и его окислах [1083, 1467], фармацевтических препаратах [1467], феррохроме и хроме [393], цинке [769], его сплавах с галлием [661], цинковых злектролитах [757]. [c.48]

    Для определения ЗЬ в меди, ее соединениях и сплавах наиболее часто используются спектральные методы (табл. 12). Экстракционно-фотометрическими методами с применением кристаллического фиолетового ЗЬ определяют в черновой меди [649], медных концентратах [190], медно-цинковых сплавах [685], оловянных бронзах [94], медно-никелевых сплавах [686] с применением метилового фиолетового — в конверторной меди [359], безоловянных бронзах [93] и с применением родамина С — в медных сплавах [1580]. Эти методы позволяют определять ЗЬ при ее содержании до [c.137]

    Область применения анализ чугуна, сталей, никелевых сплавов, чистых металлов и сплавов на их основе [c.793]

    Галоиды и сера, которые ускоряют коррозию, выявляют в случае необходимости, например, при контроле аустенитных сталей, титановых и никелевых сплавов по стандартам. Из полученных данных можно сделать выводы о возможностях применения дефектоскопических материалов для особых объектов. [c.629]

    Никелевые сплавы характеризуются высокой стойкостью против общей и локальной коррозии, хорошо свариваются, технологичны при изготовлении различных видов аппаратов. Применение материалов этой группы для сред с высокими параметрами агрессивности позволяет увеличить срок службы и надежность оборудования. [c.211]

    Существуют также разновидности сплавов, представленных в табл. 3.1. Области применения никелевых сплавов не ограничиваются случаями, когда основным требованием является коррозионная стойкость в водных растворах. Перечень промышленных никелевых сплавов, предназначенных для различных специальных целей, гораздо шире, чем это представлено в табл. 3.1. [c.169]

    В химической промышленности находят применение медноникелевые сплавы, содержащие 10, 30 и 63—70% Ni, а также другие металлы, в частности Fe и Мп. При скорости движения морской воды 0,30 м/с и менее коррозия таких сплавов имеет в основном равномерный характер со слабой тенденцией к питтингообразованию. Наименее подвержены коррозии сплавы Си (90), Ni (10) и Си (70), Ni (30). При больших скоростях движения морской воды стойкость медно-никелевых сплавов несколько повышается вследствие снижения коррозионного действия различного рода загрязнений воды и отложений на поверхности металла. В частности, при скоростях 1,5—4 м/с, соответствующих движению морской воды в насосах и теплообменниках, сплавы Си (70), Ni (30) и Си (90), Ni (10) подвержены лишь незначительной коррозии в зонах с турбулентным режимом движения. Противокоррозионные свойства этих сплавов могут быть улучшены введением в их состав 1—3% Fe. Однако присутствие в сплаве Си (70) и Ni(30) более 1% Fe увеличивает вероятность питтингообразования. Достаточно эффективно введение в состав сплава Си (70), Ni (30) добавок алюминия. Склонность к коррозии в зонах турбулентности в большей степени присуща никельсодержащим сплавам, чем чистому никелю. При очень высоких скоростях движения среды (от 4 до 40—50 м/с) скорость коррозии медно-никелевых сплавов выше, чем при более умеренных скоростях. [c.31]

    Достаточно коррозионно-стойким материалом, применяемым для изготовления охладителей и конденсаторов, потребляющих морскую воду, являются медно-никелевые сплавы. Чаше всего используются медно-никелевые сплавы, содержащие 80—70% № и 20—30% Си. Нашли применение также сплавы с меньшим содержанием N1 (сплав МНЖ-1-5). На поверхности этих сплавов образуется тонкая, хорошо сцепленная с основным металлом пленка, которая защищает металл от многих видов коррозии. [c.142]

    Недостатками дуговых печей являются некоторый угар металла вследствие местного перегрева в зоне электрической дуги, недостаточная стойкость футеровки, подвергающейся действию открытой дуги, а также значительный шум, создаваемый дугой. Поэтому дуговые печи косвенного нагрева имеют ограниченное применение, их используют для плавки медных и никелевых сплавов (латуни, бронзы и некоторых других). Угар металла, в основном цинка, при плавке латуни достигает 3—4%, удельный расход энергии находится в пределах 300—350 квт-ч1т для латуни, 350—400 квт-ч1т для меди и бронзы и 600— 850 квт-ч1т для медноникелевых сплавов. [c.269]


    Никель. Широкое применение в химической промышленности и в ядерных реакторах имеют никель и его сплавы-. Наиболее часто используемые сплавы никеля обладают хорошей свариваемостью. Широко используют также стальные листы, плакированные никелем и никелевыми сплавами. Следовательно, лимитирующим фактором при выборе материала в первую очередь является стойкость в химически активных средах [68]. [c.248]

    Трещины при повторном нагреве обычно возникают в толстостенных сосудах, изготовленных из легированных сталей. В период 1960—1965 гг. тщательно изучалось образование трещин при термообработке изделий, изготовленных из аустенитных сталей и, в частности, из стали типа 347, содержащей 18% Сг, 12%М1, и 1 % Мо. Позднее появилось несколько статей по этой проблеме для высокопрочных дисперсионно-твердеющих никелевых сплавов. В отношении перлитных сталей этой проблемой стали интересоваться с 1960 г., когда в Великобритании и ФРГ были опубликованы материалы по некоторым жаропрочным и теплоустойчивым молибденовым, хромомолибденовым и хромомолибденованадиевым сталям. В последнее время проблема трещинообразования при повторных нагревах стала актуальной и для низколегированных конструкционных сталей в связи с применением для крупных сосудов высокого давления толстолистового проката. [c.454]

    Легирование никеля медью несколько повышает стойкость металла в восстановительных средах (например, в неокислительных кислотах). Ввиду повышенной стойкости меди к питтингу, склонность сплавов никель—медь к питтингообразованию в морской воде ниже, чем у никеля, а сами питтинги в большинстве случаев неглубокие. При содержании более 60—70 ат. % Си (62—72 % по массе) сплав теряет характерную для никеля способность пассивироваться и по своему поведению приближается к меди (см. разд. 5.6.1), сохраняя, однако, заметно более высокую стойкость к ударной коррозии. Медно-никелевые сплавы с 10—30 % N1 (купроникель) не подвергаются питтингу в неподвижной морской воде и обладают высокой стойкостью в быстро движущейся морской воде. Такие сплавы, содержащие кроме того от нескольких десятых до 1,75 % Ре, что еще более повышает стойкость к ударной коррозии, нашли применение для труб конденсаторов, работающих на морской воде. Сплав с 70 % N1 монель) подвержен питтингу в стоячей морской воде, и его лучше всего применять только в быстро движущейся аэрированной морской воде, где он равномерно пассивируется. Питтинг не образуется в условиях, когда обеспечивается катодная защита, например при контакте сплава с более активным металлом, таким как железо. [c.361]

    Применение. Кобальт и никель являются важными компонентами легированных сталей. Используют и спе-< циальные сплавы на основе кобальта и никеля. Так, кобальт составляет основу жаропрочных (с железом и ванадием) и высокотвердых (с карбидом вольфрама) сплавов. Никелевые сплавы обладают высокой механической прочностью, стойкостью при высоких температурах, устойчивостью к коррозии. Сплав никеля с хромом и другими веществами — нихром имеет высокое электрическое сопротивление. [c.290]

    Никелевые сплавы находят применение в тех случаях, когда от металла требуется большая коррозионная стойкость, в сочетании с высокими механическими свойствами или высокой х<аростойкостью. [c.161]

    В СССР переход к применению в крупных конденсаторах труб из медно-никелевого сплава МНЖ5-1 (ТУ 48-21-435—82) взамен [c.198]

    II никелевого сплава N1—22Сг—ЭМо—2Fe—3,75МЬ+Та могут нспользо ваться в течение 2 лет без катодной защиты. Фосфористая бронза, оцинкованная сталь и нержавеющая сталь 304L, плакированная сплавом 90—10 Си—Ni, требуют применения катодной защиты. Сталь 304 без покрытия и нержавеющая сталь 205, плакированная сплавом 90—10 Си—Ni, подвергались локальной коррозии даже в условиях катодной защиты. [c.204]

    Ж. с. подразделяют на деформируемые и литейные. Макс. уровень технол. характеристик деформируемых Ж.с. достигается применением спец. методов. Необходимой жаропрочности сплавов добиваются регулированием т-ры и продолжительности постадийной термич. обработки, а также скорости охлаждения сплава. Напр., для никелевых сплавов термич. обработка включает гомогенизирующий нагрев до 1050- 1220°С в течение 2 6 ч, охлаждение на воздухе или в вакууме с послед, одно- или многоступенчатым старением при 750 950 °С в течение 5 24 ч. Нагрев при т-ре гомогенизации переводит составляющие сплава в твердый р-р, а старение при умеренной т-ре способствует образованию в этом р-ре мелких частиц интерметаллидов, карбидов, боридов, повышающих жаропрочность сплава. Выплавляют деформируемые сплавы в вакууме метода.ми высокочастотной индукции. Напр., для никелевых Ж. с. применяют вакуумную плавку с послед, вакуумно-дуговым, электроннодуговым или плазменно-дуговым переплавом, а также элек-тродуговую плавку и электрошлаковый переплав. При использовании чистых шихтовых материалов такими методами получают металл с миним. содержанием газов, вредных примесей цветных металлов и неметаллич. включений. Выплавленные слитки подвергают деформации. Изготовляют деформируемые Ж. с. в виде прутков, лент, поковок, проволоки или листа. [c.129]

    Применение. Л. используют в произ-ве анодов для хим. источников тока на основе неводных и твердых электролитов как компонент сплавов с Mg и А1, антифрикц. сплавов (баббитов), сплавов с Si для изготовления холодных катодов в электровакуумных приборах для раскисления, дегазации, модифицирования и рафинирования Си, медных, цинковых и никелевых сплавов с целью улучшения их структуры и повышения электрич. проводимости как катализатор полимеризации (напр., изопрена), ацетилирования и др. Жидкий Л.-теплоноситель в ядерных реакторах. Изотоп Li используют для получения трития. [c.605]

    Николаев н Алесковскпн [305—307] с применением графитовой кюветы определяли от 0,00002 до 38 о алюминия в Ре, Сг, N1, Ш, НЬ, Та, Мо, Т1, Си, Сс1, 8Ь, в сталях, бронзах, латуни, силумине, в никелевом сплаве, феррованадии, силикокальции и графите. Относительная ошибка 5% при содержании алюминия 0,5— 1,5 о, при больших содержаниях ошибка меньше. Продолжительность анализа двух проб составляет 35 мнн. [c.166]

    Методы инверсионной вольтамперометрии находят широкое применение для определения Sb в различных материалах, в том числе в чугунах, железе и сталях [1348, 1575], меди и медных сплавах [87, 116, 526, 569, 1348, 1575,1585], олове[221, 222, 224, 225, 242, 318, 526], алюминии [131, 132, 731, 1503], галлии и его солях [243, 245, 293, 303], арсениде галлия [243, 245, 246, 303, 586], кадмии и его солях [302, 318, 737], германии, тетрахлориде и тетрабромиде германия [105, 134], кремнии, двуокиси кремния, тетрахлориде и тетрабромиде кремния и трихлорсиланах [105, 133, 271, 310, 1503], цинке и цинковых сплавах [67, 737], серебре [605, 731J, свинце [833], теллуре [116], мышьяке [303], хроме и его солях [940], барии [125], ртути [528], висмуте [1348], никеле и никелевых сплавах [590], припоях [1348], полиметаллических рудах и продуктах цветной металлургии [116], растворах гидрометаллургического производства [138, 319, 1545], шламах [1175], ниобии и тантале и их соединениях [223, 2901, химических реактивах и препаратах [105], криолите [245, 586], материалах, используемых в злектронной [c.68]

    Описанный метод можно применять также и к никелевым сплавам, содержащим до 4% вольфрама. К образцам, содержащим марганец, его применять нельзя из-за окисления калмагита. Этот метод очень удобен, но связан с применением малодоступных реагентов (калмагит и цианиды). Следует отметить, что во всех опубликованных работах для маскирования тяжелых металлов при анализе никеля применяют цианиды [876, 877, 911]. [c.213]

    Кислотоупорные (кислотостойкие) стали и сплавы в основном изготавливаются на железоникелевой или никелевой основе. К числу наиболее широко применяемых марок относятся такие сплавы, как 06ХН28МДТ, 03ХН28МДТ — железо-никелевые сплавы, дополнительно легированные хромом, молибденом, медью и титаном. Эти сплавы нашли широкое применение в кислотном и целлюлозно-бумажном производ- [c.99]

    Ru(III, IV) Mg Анал. р-р (25-100 мг Ru, слабокисл., 150 мл), добавл. изб. порошка Mg, нагр. до раств. изб. Mg (избегать длительного нагр.). Ф. т., промыв. H2SO4 (0,1 н.), затем водой, высуш. при 100 °С, прокал. в токе Н2 как указано выше. Применен для опр. в медно-никелевых сплавах Ru 428, 436 [c.490]

    Колориметрическое определение олова в металлическом свинце с помощью фепилфлуорона основано на предварительном экстракционном выделении олова купфероном [233]. Описан вариант, по которому определение олова в цинке и свинце заканчивают фотометрированием его комплекса с пироллидиндитиокарбами-натом в четыреххлористом углероде [234]. Колориметрическое определение алюминия, бериллия, магния и урана в сплавах на основе циркония основано на предварительном экстракционном отделении циркония в виде купфероната [235]. Определение титана в металлическом бериллии с помощью тимола включает экстракцию купфероната титана [236]. Вместе с тем известен метод, основанный на непосредственном определении титана фотометрированием его купфероната, извлеченного 4-метилпентано-пом. Метод применен для определения титана в чугуне, стали, глине и никелевых сплавах [237], [c.246]


Смотреть страницы где упоминается термин Никелевые сплавы применение: [c.156]    [c.541]    [c.231]    [c.29]    [c.81]    [c.199]    [c.239]    [c.214]    [c.142]    [c.787]    [c.435]    [c.46]    [c.591]    [c.446]    [c.528]   
Коррозия (1981) -- [ c.153 , c.154 ]




ПОИСК





Смотрите так же термины и статьи:

Никелевые сплавы



© 2025 chem21.info Реклама на сайте