Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ также качественный область применения

    Область применения тонкослойной хроматографии практически безгранична, что объясняется возможностью большого выбора слоев различных сорбентов. Для разделения полярных веществ применяют слои адсорбентов, для гидрофильных — распределительную хроматографию на целлюлозе или силикагеле, для гидрофобных — импрегнированные слои (обращенные фазы). Можно применять также ионообменную или гель-хроматографию в тонком слое. Метод тонкослойной хроматографии в настоящее время применяют в основном для целей качественного анализа. Количественное определение возможно в такой же степени, как и в бумажной хроматографии. При проведении определений можно работать с очень небольшими количествами веществ, разделение проходит быстро и с умеренными затратами. Тонкослойную хроматографию в связи с этим можно применять для предварительных опытов по выбору фаз для разделения больших количеств веществ методом колоночной хроматографии. [c.361]


    Молекулярные спектры поглощения вещества также находят приложение в качественном анализе, при этом первое место, бесспорно, принадлежит колебательным спектрам. Их исключительно широко используют в органическом качественном анализе для установления присутствия различных функциональных групп. В неорганическом качественном анализе их применение ограничивается чаще всего определением состава и структуры комплексных соединений. Использование колебательных спектров дает возможность установить наличие изомеров. данного вещества (например, цис- и транс-изомеров).-Один из вариантов метода, известный как метод отпечатков пальцев , позволяет идентифицировать не только отдельные функциональные группы, но и целые молекулы. В этом случае после того, как будут установлены основные функциональные группы исследованного соединения и на основании всех данных предложена его определенная структура и состав, сравниваются спектры поглощения в инфракрасной области образца и того чистого известного соединения, которое, как было допущено, идентично пробе При совпадении обоих спектров можно считать, что предполагаемый состав верен, а если спектры не совпадают, то спектр исследованного вещества сравнивают со спектрами других соединений, которые, как допускается, могут иметь состав, соответствующий анализируемому образцу. [c.196]

    Аналитическая химия имеет большое значение для исследования не только в различных областях химии, но также и в ряде других наук. Изучение сложных процессов, происходящих в почве, требует применения методов количественного и качественного анализов, иногда более сложных и точных, чем в обычных химических анализах. Методы химического анализа применяются в геохимии, радиохимии, биохимии, медицине и других науках. [c.5]

    Электронные спектры поглощения молекул и ионов в УФ и видимой областях используются химиками уже более 100 лет. Классическими являются применения абсорбционной УФ спектроскопии для качественного и количественного анализов. Хотя по сравнению с некоторыми другими спектрами, например ИК, КР или ЯМР, электронные спектры поглощения менее специфичны, УФ спектроскопия в сочетании с этими методами, а также масс-спектрометрией продолжает использоваться для идентификации и определения структуры химических соединений. Этим методом изучаются равновесия и кинетика химических реакций, различного рода комплексы и межмолекулярные взаимодействия и т. д. [c.294]


    С развитием химии этиленимина встал вопрос о быстром и точном методе его определения. Поскольку в литературе до сих пор не существовало обзоров, посвященных методам анализа этиленимина, мы попытались в настоящей главе сопоставить и критически оценить существующие аналитические методики, а также рассмотреть специфические особенности и области применения отдельных методов качественного и количественного его определения. [c.144]

    На фоне таких крупных успехов особенно заметно отставание, наблюдаемое в области применения этого метода для идентификации химических соединений. Такое отставание нельзя объяснить недостатками самого метода. Хроматографические постоянные индивидуального соединения, определенные на различных неподвижных фазах и взятые в совокупности, служат таким же надежным отличительным признаком этого соединения, как, например, характеристические частоты той или иной функциональной группы при спектральном анализе. В какой-то степени отставание объяснимо условиями возникновения и развития газовой хроматографии в 50—бО-е годы, когда бурно развивались смежные области науки и техники. Это привело к быстрому созданию современной высокоавтоматизированной аппаратуры для осуществления эффективного разделения смесей и получения надежных количественных результатов. Достижению высокой эффективности разделения способствовали также большой ассортимент сорбентов и носителей, используемых в газовой хроматографии, и разнообразие рабочих параметров, с легкостью реализуемых в современной хроматографической аппаратуре. Следствием явилось то, что качественные данные (о параметрах удерживания) часто представляли собой побочный продукт количественного анализа. В силу этого они оказались разрозненными и плохо сопоставимыми, их трудно использовать для идентификации химических соединений. [c.4]

    Применение ИК-с пектров и спектров комбинационного рассеяния. ИК-Спектры и спектры комбинационного рассеяния применяются для идентификации соединений и для установления степени их чистоты (качественно). ИК-Спектр (особенно в области отпечатков пальцев ) специфичен для каждой молекулы, поэтому, как правило, нет необходимости в определении молярного коэффициента поглощения Е (в отличие от УФ-спектров). ИК-Спектры могут быть использованы также для качественного анализа смесей при контроле за ходом реакции и для кинетических измерений. [c.616]

    Я решил написать эту монографию в связи с тем, что всегда интересовался применением комплексообразующих веществ в химическом анализе. Как только появилось первое сообщение проф. Г. Шварценбаха о свойствах новых комплексообразующих веществ, которые были очень уместно названы комплексонами, стало очевидно, что применение комплексонов в химическом анализе будет иметь существенное значение не только для обычных методов качественного открытия, но в особенности для количественного разделения веществ, с которым мы встречаемся, например, в весовом анализе. Применение комплексонов безусловно принесет также пользу во всех областях химического анализа. [c.7]

    Настоящая монография является итогом многолетней работы авторов и ю-священа главным образом перекиси водорода. В ней достаточно глубоко и полно обобщена мировая литература в этой области (приведено свыше 2500 литературных источников). Книга содержит описание истории открытия и технического применения перекиси водорода, способов образования и, как следствие, путей промышленного ее получения и способов очистки, а также правил обращения с этим веществом. Из рассмотрения физических свойств перекиси водорода и сопоставления их со свойствами других кислородо-водородных соединений вытекает строение молекулы перекиси водорода, которое подтверждается при последующем рассмотрении химических свойств перекиси водорода и способов ее стабилизации. Достаточно полно представлено описание качественного и количественного анализа, а также способов применения перекиси водорода для целей отбеливания и окисления, как источника энергии в военном деле, источника радикалов, а также как агента, влияющего на биологические процессы. [c.5]

    В отличие от первого издания, в котором излагался как макрометод, так и полумикрохимический метод, в данном учебнике описывается только полумикрохимический метод качественного анализа неорганических веществ. Кроме реакций ионов, обычно рассматриваемых в такого рода курсах, в учебнике приводится описание реакций и способов разделения наиболее важных редких и рассеянных элементов дается понятие о физических и физико-химических методах анализа, а также о теории и практике методов титрования в неводных растворах, получивших за последнее время широкое практическое применение в различных областях химической науки и промышленности. [c.9]


    За прошедшее время было открыто огромное количество ценных органических реактивов на разные ионы, нашедших наряду с применением маскирующих средств, особенно широкое распространение в капельном анализе. Изыскание органических реактивов является одним из наиболее важных и плодотворных направлений научно-исследовательских работ в области качественного анализа и в настоящее время. Большое значение органические реактивы имеют также и для количественного анализа. Исследования по теории действия и практическому применению органических реактивов в анализе ведутся многими учеными. [c.259]

    В книге рассмотрены основные понятия, закономерности и методы исследования фотолюминесценции растворов, а также ее применения в аналитической химии (качественный и количественный анализ органических и неорганических веществ, а также их смесей) и для определения параметров возбужденных электронных состояний органических молекул. Автор ее — активно и плодотворно работающий ученый, с именем которого ассоциируется ряд крупных достижений в области молекулярной люминесценции. Монография адресована как начинающим исследователям, для которых она может служить учебником, так и опытным работникам, которым полезны многочисленные примеры и ссылки на литературу. [c.4]

    При проверке чистоты вещества помимо элементного анализа пользуются определением физических постоянных, если соответствующие величины, а возможно, и их зависимость от температуры точно известны. Наибольшее распространение в лабораторной практике имеют определения температуры плавления, плотности, показателя преломления и давления пара. Если эти методы неприменимы, то можно в качестве испытания на однородность подвергнуть вещество операциям разделения. Для этой цели применяют прежде всего не требующие значительных затрат времени методы газовую, тонкослойную хроматографию нлн хроматографию на бумаге. Высокой чувствительностью по отношению к примесям обладают спектроскопические методы. При этом для характеристики жидкостей (например, растворителей, см. разд. 6) и растворенных веществ наиболее важны электронные спектры. Полезно иметь также инфракрасный и масс-спектр, которые в соответствующем аппаратурном оформлении могут быть сняты для образцов в твердом, жидком н газообразном состоянии. Оба метода дают возможность проводить качественное и полуколнчественное определение примесей, что очень облегчает принятие решения о целесообразности дальнейшей очистки. Например, содержание воды в твердом препарате легко определяется по широким полосам поглощения при 1630 н 3400 см в ИК-спектре. Разумеется, в этом случае следует иметь в виду, что галогениды щелочных металлов, используемые при приготовлении таблеток для ИК-спектроскопии, гигроскопичны. Их применение для съемки гигроскопичных объектов или для определения воды возможно только после нх тщательной осушки и лишь прн полном отсутствии воздуха (отмеривание, растирание с веществом, наполнение пресс-формы проводятся в сухой камере). Другой возможностью является съемка суспензии вещества в сухом нуйоле или в другой подходящей жидкости. Подобные жидкости должны обладать достаточно высокой вязкостью и по возможности малым собственным поглощением в соответствующей области спектра. В качестве материала для изготовления окон кювет для съемки ИК-спектров газов и жидкостей применяют вещества, перечисленные в табл. 26. Если нет необходимости вести съемку в области ниже 600 см , то следует пользоваться сравнительно дешевыми монокристаллами хлорида катрня. Конечно, вещество не должно реагировать с материалом окон (при необходимости предваритель- [c.142]

    Вторая глава посвящена применению ЭВМ для идентификации и качественного анализа определение структуры неизвестного соединения с использованием больших каталогов масс-спектров методами распознавания образов и эвристического программирования. Рассмотрены алгоритмы построения структур возможных изомеров по заданной брутто-формуле, применяющиеся в эвристическом программировании. Машинные методы качественного анализа сочетаются с различными приемами масс-спектрометрии высокого разрешения и активирующих столкновений. Возможности структурной идентификации ароматических углеводородов и некоторых типов гетероатомных соединений существенно расширились благодаря работам в области масс-спектрометрии отрицательных ионов. Описание этих методов еще не вошедших в повседневную аналитическую практику,, также дано во второй главе. [c.6]

    Люминесцентный анализ (флуориметрия). Применение метода (см. также гл. 1, раздел 1.2) в качественном анализе основано на регистрации люминесцентного излучения (свечения), испускаемого веществом, энергетически возбужденным вследс гвие поглощения электромагнитного излучения, за счет энергии электрического разряда, химических реакций, при термическом возбуждении и г. д. Поглощая энергию (например, световую в видимой области или УФ-области спектра), вещество переходит из основного (невозбужденного) электронного состояния в некоторое возбужденное электронно-колебательное состояние. Затем очень быстро часть поглощенной энергии теряется (безызлучательные потери энергии), а оставшаяся — испускается в виде люминесцентного свечения. Длительность т такого свечения весьма мала. При спонтанной люминесцен- [c.590]

    Книга представляет собой практическое руководство по методам качественного и количественного полумикро-, микро- и ультрамикроанализа, а также по изготовлению и применению различных видов аппаратуры, требуемой при работе по этим методам. Особенность книги заключается в очень подробном описании оригинальной техники проведения работы с малыми количествами веществ (от 0,1 до 0,000001 г), данном на основе подбора типичных примеров неорганического анализа. Книга представляет интерес для работников научно-исследовательских, заводских и учебных лабораторий, ведущих работу в области полумикро-, микро- и, особенно, ультрамикроанализа. [c.4]

    В своей работе в области химико-аналитических исследований Ловиц всегда стремился найти точные признаки , на основании которых возможно идентифицировать вещества, прежде всего минеральные соли. Не удовлетворяясь широким применением противу-действующих средств, т. е. реактивов для качественного и количественного определения кислот, земель и металлов, Ловиц ищет другие признаки вещества, в частности, в кристаллографических формах солей. Ему принадлежит заслуга основания микрохимического анализа, а также анализа солей по форме кристаллических узоров [c.462]

    Стремительный рост производства полимеров и их применения за последние десятилетия вызвал резкое увеличение объема исследований, проводимых методом инфракрасной (ИК) спектроскопии. Первые крупные работы в этой области появились в 1945 г. Дальнейший прогресс ИК-спектроскопии полимеров был связан как с созданием надежных спектрометров, так и с развитием теоретических основ колебательной спектроскопии макромолекул. Всего лишь 25 лет назад было сказано следующее [1645] Если для молекулы аммиака в настоящее время можно провести полный теоретический анализ колебаний, из которого удается определить длину и угол связи с точностью в 1%, о полимерах, исходя из их ИК-спектров, вряд ли можно сказать больше, чем то, что они содержат те или иные химические группы . Р С момента этого высказывания значительные изменения претер-пело то, что относится к его второй части. Полный анализ коле- ) баний возможен теперь для ряда линейных полимеров, содер- 0 жащих простые звенья. Качественные данные также содержат [c.17]

    В последние десятилетия наблюдалось бурное развитие рентгеноструктурного анализа (в первую очередь с использованием монокристаллов), а также других дифракционных методов исследования. Это обусловлено рядом причин. Одной из них явилось кардинальное усовершенствование рентгеновской аппаратуры, включая разработку ряда типов дифрактометров, управляемых ЭВМ, для съемки монокристаллов, внедрение новых способов регистрации рентгеновского излучения, использование монохроматоров. В результате точность экспериментальных данных резко возросла и появилась возможность решения принципиально новых задач (локализация легких атомов, определение деталей распределения электронной плотности на базе совместных данных нейтронографического и рентгеновского методов). Не менее важным обстоятельством явилась разработка комплексов программ обработки результатов измерений и определения структуры кристаллов, зачастую с недостаточно охарактеризованным химическим составом. Этой области применения рентгеноструктурного ана 1иза в химии посвящено несколько прекрасных монографий и учебников, и структурные разделы почти обязательно включаются в работы по синтезу новых соединений, так как дают непосредственные данные о пространственном расположении атомов в кристаллах а иногда являются и удобным способом определения химического состава, в особенности если известен качественный состав. [c.3]

    В ряде случаев задачей структурного анализа является не выяснение структуры вещества в целом, а только определение природы и содержания некоторых атомных групп, определяющих свойства вещества. Такие структурные группы могут входить в каркас молекул или являться функциональными. Структурно-групповой анализ применяют при исследовании сложных природных или технических продуктов, для которых очень трудно или невозможно полностью определить структуру. Метод находит также применение при исследовании смесей веществ, из которых выделение отдельных соединений слишком длительно, или тогда, когда нет необходимости их выделения 126]. Простейшим примером структурно-группового анализа является качественный анализ неорганических соединений в растворах, поскольку при этом во многих случаях определяют не сами элементы, а определенные структурные группы (например, SOI, 50Г. l", С10 , СЮз, IO4 и т. д.). В области органической химии качественный анализ по Штау-дингеру является простейшей формой анализа структурных групп. [c.406]

    В настоящее время имеются труды по отдельным группам минералов, В работе Е. Я. Роде [У-146, 149] подробно разработан термоанализ марганцевых руд, а также железных [У-147, 111-163, 164], свинцовых [111-165, 166] и других В. П. Ивановой собран достаточно полный материал по хлоритам [У-ЗО] Цветковым А. И. [111-216 218, У-199 201] составлены сводки термограмм по ряду различных минералов. Много работ посвящено термической характеристике силикатов и глин. Однако термоаналитические данные отдельных классов веществ являются только одной из возможных областей применения термографии и по существу представляют собою лишь качественный фазовый анализ различных смесей. Между тем, возможности применения термографии значительно шире. Этот объективный и чувствительный метод физико-химических исследований несомненно позволит глубоко проникнуть в сущность ряда явлений которые иными методами не могут быть изучены. [c.8]

    Применение микроволнового излучения (МВИ) является одним из перспективных нетрадиционных способов воздействия на вещество . Анализ отечественной и зарубежной литературы показывает, что применение микроволнового нагрева в научно-исследователы ких целях и на опытных установках позволяет интенсифицировать химические процессы, повысить их селективность, а также осуществить превращения, недоступные при использовании традиционных способов нагрева Создание и распространение специализированной микроволновой техники, оснащенной современными средствами контроля и регулировки параметров процессов, дает возможность осуществлять органический синтез на более качественном уровне Большой объем преимущественно лабораторных исследований, проведенных за последние 10-15 лет, развитие работ по созданию нового микроволнового оборудования привели к необходимости обобщить и систематизировать полученные данные в области микроволновой [c.188]

    Огромное значение в различных областях науки и народного хозяйства приобрели разнообразные виды люминесцентного анализа от качественного сортировочного до тоикох о и сверхчувствительного количественного химического анализа, а также применения люминесценции для люминесцентной дефектоскопии. [c.10]

    Применение органических реагентов в качественном анализе привело к развитию нового метода — капельного анализа. Благодаря интенсивной окраске, возникающей при взаимодействии ионов с органическими реагентами, анализ можно проводить в капле раствора. Начиная с 1920 г. разработкой и соверщенст-вованием капельного анализа занимался Ф. Файгль. Результаты своих исследований он обобщил в вышедшей в 1954 г. монографии. Существенный вклад в эту область анализа внес также Н. А. Тананаев. [c.90]

    Описанная выше методика двойного резонанса представляет собой полезное расширение применения ЯМР-спектроскопии для измерения констант скоростей. Она применима к области медленного обмена, где форма линии спектра нечувствительна к изучаемому динамическому процессу. Она также представляет собой изящный метод идентификации обменивающихся ядер, или качественного анализа динамического поведения молекулы. Например, эта методика была с успехом применена для обнаружения конформационной нежесткости [18] аннулена при комнатной температуре. Облучение сигнала внутренних протонов приводит к четкому уменьшению интенсивности сигнала внешних протонов (разд. 2,3 гл. VIII) вследствие протекания процесса химического обмена между этими двумя положениями. [c.318]

    Применение ИК-спектроскопии в научно-исследовательских, аналитических и промышленных лабораториях получило в последние 20 лет настолько быстрое и широкое развитие, что едва ли можно назвать какой-либо другой физический метод, сравнимый с ней в этом отношении. Помимо того что ИК-спектры давно уже плодотворно используются для изучения структуры молекул, качественного и количественного анализа в химии, метод открывает все новые неоценимые возможности и резервы для решения практических задач в различных узкоспециальных областях производства, науки и техники. Иллюстрацией этому может служить и предлагаемая вниманию читателя книга, касающаяся некоторых важных аспектов прикладной ИК-спектроскопии. Книга написана коллективом авторов — специалистов в разных областях знаний, плодотворно применяющих и совершенствующих технику ИК-спектроскопии. В ней не ставилась цель рассмотреть все вопросы теоретической и практической сторон метода, в чем и не было необходимости, так как в настоящее время имеется обширная научно-техническая и учебная литература по этим вопросам. Содержание же данной книги может быть вкратце охарактеризовано по следующим группам глав. Первые две главы и гл. 10 имеют вводный характер и дают неискушенному читателю необходимые общие знания принципов устройства и действия ИК-аппаратуры (гл. 1) и техники приготовления образцов для исследования (гл. 2), в том числе микрообразцов (гл. 10). Главы 3—5 уже вполне оригинальны и касаются практического применения ИК-спектроскопии в фармацевтической и парфюмерной промышленности для анализа лекарственных и косметических препаратов, эфирных масел и т. д., а также применения в геохимии, в частности для исследования структуры каменного угля. Для специалистов, работающих в указанных и смежных областях, эти главы, несомненно, очень полезны. В гл. 6 содержатся ценные сведения об организации и практике работы заводских лабораторий США, использующих метод ИК-спектроскопии, а гл. 7 дает достаточно полное представление о современных промышленных ПК-анализа-тора.х, работающих в непрерывном поточном производстве. [c.5]

    Многие химики-аналитики считают, что из числа всех спектров поглощения наиболее полезными являются инфракрасные спектры. Это связано с тем, что с помощью обычно используемых спектрометров для многих веществ нельзя наблюдать характеристического поглощения в ультрафиолетовой области спектра, тогда как в инфракрасной области все вещества дают характеристическое поглощение. Подробное рассмотрение теории и интерпретации инфракрасных спектров и спектров комбинационного рассеяния дано в монографии Герцберга [864]. Можно рекомендовать также КНИГУ Рэндала, Фаулера, Фьюзона и Дэнгла [1521], пользование которой не требует математической подготовки. Различные вопросы, связанные с применением инфракрасных спектров в качественном и количественном анализах, описаны в работах Бернса, Гоура и др. [173, 174]. [c.47]

    При двухэлектродном режиме работы ячейка содержит рабочий электрод (поляризуемый электрод, катод) и электрод сравнения (неполяризуемый электрод, анод). В действительности в этом режиме поляризуется также и электрод сравнения, но вследствие того, что используется электрод с большой площадью поверхности, поляризация на единицу поверхности его оказывается незначительной. Однако при анализе сложных растворов природа материала электрода сравнения (ЭС) изменяется. Это приводит к изменению его потенциала и к ошибке в качественном анализе. Если в раствор поместить третий электрод и его включить в цепь обратной связи компенсатора, то второй электрод, называемый вспомогательным (ВЭ), будет находиться в токовой цепи ячейки и служить для образования этой цепи, а третий электрод — электрод сравнения — будет находиться в бестоковой цепи. Через ЭС проходят токи порядка 10- —10 ° А, и он может быть почти идеальным электродом, относительно которого можно отсчитывать потенциал РЭ. В такой конструкции благодаря обратной связи компенсируется не только г я, но и (7сэ, и поэтому допускается поляризация поверхности вспомогательного электрода. Можно, например, использовать электроды с малой площадью поверхности, большим сопротивлением. А при применении электрода, который может вводиться в приэлектродную область, в трехэлектродном режиме компенсируется падение напряжения за счет омического сопротивления раствора, и требования к проводимости фона становят- [c.110]

    Другой подход характерен для пражской школы, занявшейся под влиянием работ Брдички и Визнера (1948) электродными процессами с сопряженной химической стадией. Эти исследователи, и особенно Коутецкий, постулировали некоторый механизм реакции и затем получали соответствующие поляризационные характеристики, а также выражение для предельного тока. Данный метод восходит к Эйкену (1908) и был применен, в частности, для разрешения старой проблемы разряда комплексного металлического иона с предшествующей диссоциацией. Выли достигнуты значительные успехи при описании довольно простых процессов, таких, как восстановление с предшествующей рекомбинацией ионов, причем таким способом была исследована кинетика ряда реакций. Разработка Эйгеном и сотрудниками релаксационных и вариационных методов отчасти лишило полярографию после 1954 года монопольного положения, тем не менее вклад пражской школы остается одним из основных достижений современной электрохимии. Применение метода к более сложным процессам в принципе возможно, хотя и связано с математическими трудностями, однако определение механизма реакции путем анализа экспериментальных поляризационных характеристик является весьма ненадежным и часто не дает однозначных результатов. Это замечание применимо ко всем методам анализа, основанным только на поляризационных характеристиках, и указывает на необходимость развития методов, позволяющих качественно и возможно даже количественно определять промежуточные продукты реакции. В этой области многое остается сделать, а мы располагаем для этого в настоящее время только ограниченным числом методов. [c.16]

    Прошло неполных три года с момента первого издания этой монографии. За это время возможности использования комплексонов в химическом анализе расширились до такой степени, что я счел целесообразным основательно переработать первое в насто-яш ее время уже совершенно устаревшее издание. Содержание книги расширено до 11 глав. Первые две главы, написанные д-ром И. Корытой, посвящены подробному изложению теории комплексонов, которая была наиболее слабой стороной первого издания. В главах III—VIII описывается действие комплексонов в качестве маскирующих веществ в весовом анализе, колориметрии, объемном анализе, хроматографии, полярографии и качественном анализе. Глава IX посвящена открытию и определению этилендиамин-тетрауксусной кислоты, имеющей важное значение, поскольку с этим веществом мы постоянно встречаемся в терапии, в фармацевтическом производстве, в агрономии и т. п. Совершенно новыми являются последние две главы. В главе X подробно изложены основы комплексометрического титрования, главным образом техника его выполнения, а также по возможности уделено внимание большинству предложенных до сих пор комплексометрических индикаторов. В последней главе помещен материал исключительно по практическому применению комплексометрии в различных областях химического анализа, который можно было собрать в доступной литературе до конца 1955 г. [c.9]

    Прогресс в развитии различных областей естествознания всегда в значительной степени зависит от уровня экспериментальной техники. Очень ярко эту связь можно проследить и на примере химической кинетики. Менее ста лет назад проф. Н. А. Меншут-кин смог сделать свои замечательные открытия по влиянию среды на скорость химических превращений, а также но установлению связи между скоростью химической реакции и строением реагирующих веществ, используя значения часовых скоростей , устанавливаемых методами простого химического анализа. Полвека назад прогресс химической кинетики газовых реакций был связан с широким применением вакуумной манометрической техники, хотя разрежение, достигаемое при помощи простейших фор-вакуумных насосов, было незначительным, а манометрическая техника ограничивалась чаще всего применением и-образпого ртутного манометра. Качественно иной уровень приобрели кинетические исследования после появления в арсенале химической кинетики современной вакуумной и манометрической техники. Однако вскоре химиков перестало удовлетворять простое феноменологическое описание закономерностей развития химических реакций во времени, основанное на построении кинетических кривых, описывающих изменение тех или иных свойств системы. Феноменологическая кинетика дала много, но вместе с тем не ставила практически никаких пределов для построения гипотетических механизмов химических реакций различных классов, вместо того чтобы достоверно решать задачу обнаружения и идентификации конкретных участников сложного химического процесса — молекул, атомов, радикалов, ионов, комплексов, возбужденных частиц. [c.5]

    Физико-химические и методические основы адсорбциопно-комплексо-образовательного хроматографического метода были освещены в ряде работ [16— 23]. Были показаны также возможности применения этого метода в различных областях науки и промышленности, как, например, глубокая очистка солей металлов, разделение солей металлов на группы или выделение одного из компонентов смеси, концентрирование растворов солей металлов, качественный анализ смесей ионов, исследование процессов комплексообразования, попутное извлечение редких и рассеянных элементов при комплексном использовании рудного сырья, разделение близких по свойствам элементов, разделение органических веществ и осуществление некоторых химических реакций в органической химии [16—53]. Но наибольшие успехи применения этого метода были достигнуты при глубокой очистке веществ и получении их в спектрально чистом виде. [c.102]

    Жирно-ароматические дисульфиды типа дибензилдисуль- фида имеют промежуточную величину потенциала полуволны. Из таблицы видно также, что в одинаковых условиях определения потенциал полуволны третичного дибутилдисульфида на, 2 в смещен в область более отрицательных значений относи-ельно потенциалов первичных и вторичных диалкилдисульфи-ов. По-видимому, дело здесь в том, что пространственное расположение метильных групп третичного дибутилдисульфида затрудняет адсорбцию атомов серы на поверхности ртутной капли, а следовательно, и электродный процесс [463—466]. Следует отметить указание на то, что в случае некоторых замешенных дифенилдисульфидов восстановление на ртутном капельном электроде протекает обратимо [462]. Большую помощь в качественной дифференциации дисульфидов по потенциалам полуволн может оказать метод производной полярографии. Последний довольно детально разработан и широко используется при анализе неорганических соединений [467—474], но пока еще не нашел себе широкого применения в органическом анализе. [c.59]

    Как уже указывалось ( 9), пионером применения органических реактивов в неорганическом анализе был русский ученый М. А. Ильинский, предложивший в 1884 г. органическое соединение сс-нитроэо- -нафтол в качестве реактива на ион Со (см. стр. 216). Однако широкое использование органических реактивов началось лишь после классических исследований Л. А. Чугаева, выдвинувшего на первый план проблему изучения аналитических свойств внутрикомплексных солей и предложившего СБОЮ известную реакцию на ион N1 + с диметилглиоксимом (1905 г.). Указанная реакция до сих пор является лучшей реакцией этого катиона. Работы Л. А. Чугаева положили начало новой эпохе в истории развития аналитической химии, характеризующейся широчайшим использованием органических соединений в аналитической химии. За прошедшее с тех пор время было открыто огромное количество ценных органических реактивов на разные ионы, нашедших, наряду с применением маскирующих средств, особенно широкое распространение в капельном анализе. Изыскание органических реактивов является одним из наиболее важных и плодотворных направлений научно-исследовательских работ в области качественного анализа и в настоящее время. Большое значение органические реактивы имеют также и для количественного анализа. В СССР исследования по теории действия и практическому применению органических реактивов в анализе ведутся многими учеными. [c.181]

    Далее, преимущество спектрографического метода в сравнении с другими методами совершенно очевидно заключается еще в том, что после-раз произведенной подготовки, исследования могут быть произведены в самое короткое время. Оказалось также, в особенности специально при исследовании легких туберкулезного больного, подвергшегося лечению золотом, что действительно существует известная органная и тканевая специфичность золота, по крайней мере в этом случае таковая оказалась. Метод, этот оказался здесь особенно ценным потому, что только он один дает возможность в течение самого короткого времени исследовать коли ч е-ственно и качественно различные области одного и того же органа. Получается поэтому возможность в таком случае, сравнивая под микроскопом соответственные больные части легких, определить, в какой мере золото проникло в заболевшие части легких. Таким образом эта методика и прежде всего методикако-личественного анализа, помимо ее преимуществ для научных исследований, открывает перспективы и практически чрезвычайно важные, бросая свет на терапию солей металлов и на вопросы распределения примененных для лечения металлов в соответственных органах и тканях. [c.93]


Смотреть страницы где упоминается термин Анализ также качественный область применения: [c.312]    [c.3]    [c.5]    [c.24]    [c.184]    [c.9]    [c.421]    [c.373]    [c.154]    [c.154]    [c.9]    [c.186]   
Газо-жидкостная хроматография (1966) -- [ c.334 ]

Газо-жидкостная хроматография (1966) -- [ c.334 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ качественный

Анализ применение

Область применения



© 2025 chem21.info Реклама на сайте