Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислый хлористый натрий реагент

    В морской воде, нагреваемой установкой погружного горения, В НГДУ Узеннефть в качестве ингибиторов коррозии были испытаны следующие реагенты и смеси силикат натрия, натрий пирофосфорнокислый, натрий двухромовокислый, азотнокислый аммоний, натрий кремнефтористоводородный, силикат натрия+натрий фосфорно-кислый, силикат натрия + цинк хлористый, натрий д вухромово Кислый-1-натрий фосфорнокислый, натрий пи-рофосфорнокислый + цин к сернокислый. [c.222]


    В тех случаях, когда показатель увлажнения меньше, чем от действия ГИПХ-3 в количестве 0,3 % (У = 13,6), видимо, дополнительно идут химические взаимодействия. В частности, со стабилизаторами и ГКЖ идет реакция нейтрализации избытка щелочи кислой средой ГИПХ-3 и, следовательно, происходит уменьшение его концентрации в растворе. Если на поверхности образца происходит конкурирующая адсорбция стабилизатора и ГИПХ-3, то именно проникшая часть последнего внутрь образца и приносит суммирующий эффект по механизму замены обменных комплексов и пленочных эффектов. Механизм замедления увлажнения реагентом НТФ отчасти совпадает с ГИПХ-3, но от проявления их потенциальных адсорбционных возможностей при конкуренции, а также от появления новых эффектов зависит конечный результат. Нами было обнаружено, что НТФ при взаимодействии с аминами, в частности с аминированным хлористым натрием — АХН, взаимодействует с образованием гелеобразного осадка. Возможно, и в случае НТФ + ГИПХ-3 идет реакция с образованием нового вещества, но она не охватывает полные концентрации реагентов. Поэтому в области малых концентраций НТФ с фиксированным количеством ГИПХ-3 улучшения показателя У не происходит. С повышением концентрации НТФ реакция образования новых веществ завершается и появляется суммарный эффект. [c.137]

    Химическая стойкость. Стойкость клеящих материалов к действию различных реагентов определяется химической стойкостью полимеров, входящих в их состав. Большинство синтетических клеев на основе термореактивных органических полимеров оказывается стойким к действию минеральных масел, растворов хлористого натрия и многих реагентов кислого характера. При действии щелочей такие клеи разрушаются. Термопласты (за исключением труднорастворимых соединений типа полиимидов и полибензимидазолов) не стойки к органическим растворителям. Стойкостью к действию окислительных сред обладают фторсодержащие клеящие полимеры. [c.26]

    Посторонние вещества попадают а раствор в виде примесей к основным реагентам, и прн корректировании раствора концентрация этих примесей может быть столь значительной, что вредно отразится на процессе Данные исследования П показывают, что ничтожные количества ионов роданида и хлористого свинца (0,1 г/л) полностью прекращают процесс как в кислых, так и в щелочных никелевых растворах. Вредное влияние на процесс оказывают соли кадмия, причем в щелочных никелевых растворах в большей степени, чем в кислых никелевых Присутствие в кислом растворе хлористых солей цинка, магния, алюминия, железа и натрия (до 0,1 г/л) не оказывает заметного влияния на процесс. При повышении концентрации хлористого железа до 3 г/л скорость процесса сильно снижается [c.8]


    Работы по катализу Сабатье начал с изучения реакций присоединения водорода к непредельным соединениям вскоре он распространил гидрогенизационный катализ на ароматические углеводороды, кислород- и азотсодержащие соединения. Известно, каким большим количеством методов восстановления располагала органическая химия до работ Сабатье и в то же время как ограничены были возможности этих методов. Восстановление амальгамой натрия, натрием и спиртом, цинком в кислой и щелочной средах, йодистым водородом и другими реагентами требовало соблюдения большого числа различных условий и все-таки, как правило, сопровождалось многими побочными реакциями. Реагентов, восстанавливающих только одну систему и не затрагивающих другие системы, не существовало. Техника проведения реакций была сложной. Процесс восстановления часто требовал затраты дефицитных реактивов (олово, хлористое олово, иод и др.). После исследований Сабатье возможности восстановления или гидрогенизации органических соединений стали неизмеримо шире. Реакции Сабатье отличались удивительной простотой. Методика выполнения экспериментов заключалась по существу в пропускании смеси паров органического вещества с водородом через трубку, содержащую мелко раздробленный металл в качестве катализатора. [c.27]

    Реагенты должны быть высушены до постоянной массы при следующих условиях тетраоксалат калия— при 57 i 2° С калий фталевокис-лый кислый и калий фосфорнокислый однозамещенный — при 110 5° С натрий фосфорнокислый двузамещенный — при 120 5° С. Буру выдерживают до постоянной массы при комнатной температуре в эксикаторе над смесью влажного хлористого натрия и сахара. Калий виннокислый кислый применяется без предварительного высушивания. [c.133]

    Важнейший метод отделения бора от других элементов основан на отгонке борнометилового эфира В (ОСНд)з из кислых растворов. Отгонка этого соединения проводится кипячением подкисленных растворов боратов щелочных или щелочноземельных металлов, в которые введен метиловый спирт. Метод служит как для извлечения бора перед его определением, так и для удаления из растворов, где присутствие его нежелательно. Метод, применяемый в первом случае, подробно изложен в разделе Титрование едким натром (стр. 834). Основным требованием при этом является полное извлечение бора, возможно менее загрязненного кислотой, для поглощения которой можно пользоваться различными реагентами, например хлоридом кальция или сиропообразной фосфорной кислотой. Если же целью обработки является только удаление бора из раствора, применение обезвоживающих реагентов недопустимо. В этом случае раствор вьшаривают досуха, остаток обрабатывают 25 мл абсолютного метилового спирта или метилового спирта, насыщенного хлористым водородом, и затем, прикрыв раствор часовым стеклом, снова осторожно выпаривают досуха. Для полного удаления бора необходима 2—4-кратная обработка. Из разбавленных водных растворов бор полностью не удаляется. [c.833]

    Нигрозины — черные красители, получающиеся нагреванием нитросоединений, например нитробензола или нитрофенолов, с анилином и солянокислым анилином в присутствии железа или хлористого железа. При изменении соотношений реагентов и времени нагревания получаются синие или зеленые оттенки, соответствующие степени фенилирования. По окончании нагревания плав охлаждают, подщелачивают, удаляют избыток анилина нагреванием в вакуумной полочной сушилке, а оставшемуся основанию придают растворимость в спирте, переосаждая, если это требуется, из кислого раствора. Получаются спирторастворимые Нигрозины. Другой способ получения Нигрозина (Основание нигрозина СР нового, Ю) заключается в нагревании аминоазобензола с соляной кислотой до полного удаления воды и спекании остатка при 130—135° в течение нескольких часов. Необходимо строго следить за временем и температурой нагревания, поскольку при более длительном спекании и при более высокой температуре получается более синий плав. Плав подщелачивают водным раствором едкого натра, основание выделяют и перегоняют с водяным паром до тех пор, пока содержание в нем анилина не станет меньше 2%. В Черном для кожи должно содержаться мало анилина кроме того при большом содержании анилина в основании оно становится липким и трудно измельчается. [c.887]

    Лабораторная проработка выбранной технологической схемы выявила необходимость совершенствования отдельных стадий для успешного масштабирования процесса в условиях опытного производства. Так, замена одного из реагентов на первой стадии процесса (хлорметилирование алкилбензолов) соляной кислоты на хлористый натрий позволила сократить вдвое объем кислых стоков, а также улучшить состояние воздушной среды в производственньгх помещениях. [c.124]


    Восстановление железом ведут при температуре кипения, очень медленно добавляя нитросоединение к взвеси железа" в подкисленной воде, часто содержащей спирт. При этом смесь нужно сильно перемешивать, чтобы железо не оседало на дно. В некоторых случаях большую роль играет концентрация спирта. Последовательность добавления реагентов бывает очень различна. К смеси остальных реагентов добавляют или-нитросоединение, или кислоту, или попеременно железо и кислоту. Добавление небольшого количества хлористого никеля ускоряет начало реакции и ее теуение . По окончании реакции смесь осторожно подщелачивают содой или бикарбонатом натрия и отфильтровывают от железного шлама. Обычно амины в этих условиях. остаются в растворе если амин нерастворим, он переходит в осадок вместе железом, и его необходимо экстрагировать при помощи соответствующих органических растворителей. Летучие амины отгоняют из реакционной смеси с водяным паром без фильтрования. Если амин можно легко выделить из кислого раствора, кислоту применяют в таком количестве, чтобы все железо перешло в раствор В этих случаях, в противоположность мегоду Бешана, лучшие результаты получены при пользовании кузнечным железом. Аналогичным путем можно получить амины Из азосоединений. [c.496]

    Эпоксидное число смолы выражается количеством грамм-акгива-лентом эпоксидных групп в 100 г исследуемой смолы, рассчитываемого (количества) по формуле. Определение основано на измерении количества присоединившегося к эпоксидным группам хлористого во дорода в среде диоксана при комнатной температуре и титровании избытка хлористого водорода спиртовым раствором гидроокиси натр Основной реагент - раствор соляной кислою в диоксане - должен обязательно обезвожён, так как присутствие даже незначительного количества воды в реагентах искажает (снижает) найденное эпокси нее число на О,5-0,8%, что вызывается, вероятно, протеканием пс бочной реакции воды с окисями. Диоксановый метод определения эг ксидных групп позволяет проводить анализ смолы в течение 35-40 [c.6]


Смотреть страницы где упоминается термин Кислый хлористый натрий реагент: [c.222]    [c.451]    [c.340]    [c.340]    [c.28]    [c.37]    [c.5]    [c.499]   
Справочное руководство по эпоксидным смолам (1973) -- [ c.121 ]




ПОИСК





Смотрите так же термины и статьи:

Натрий реагент

Натрий хлористый



© 2025 chem21.info Реклама на сайте