Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конвекция при течении в трубах

    В. Конденсация при вынужденной конвекции. Здесь рассмотрена конденсация внутри труб при вынужденном течении. Трубы, имеющие шероховатые внутренние поверхности, обогреваемые конденсирующимся паром, установлены в испарителях горизонтально и на их наружной поверхности испаряется рассол. [c.361]

    Трубы некруглого сечения часто применяются в теплообменниках, системах охлаждения ядерных реакторов, магнитогидродинамических устройствах, системах отопления и охлаждения помещений и т. д. Их сечения могут иметь форму прямоугольника, правильного многоугольника, сектора круга, кольца или треугольника. Вертикальные смешанно-конвективные течения в трубах некруглого сечения также можно подразделить на полностью развитые и развивающиеся. Большинство результатов получено для ламинарного режима течения. В работе [155] представлен обзор результатов измерения теплового потока и падения давления для ламинарной вынужденной конвекции в трубах некруглого сечения. [c.636]


    Анализируя литературные данные, авторы 17] установили границы области параметров, в которой становятся важными эффекты естественной конвекции прн течении в трубе. Полученные результаты для горизонтальной трубы приведены иа рис. 6. [c.124]

    Возрастание сопротивления при течении в нагреваемых трубах обусловлено возникновением вторичного течеиия, при котором прилегающие к стенкам трубы нагретые слои жидкости поднимаются вверх, а вблизи вертикальной плоскости симметрии формируется нисходящий поток. Поэтому линии тока имеют форму спиралей в каждой из двух примыкающих друг к другу ячеек. Такое вторичное течение весьма напоминает течение в искривленных трубах (см. п. D). В действительности между эффектами кривизны и естественной конвекции существует более общая аналогия (см. 1127 в 2.2.1). [c.125]

    Очевидно, что при турбулентном течении в трубе естественная конвекция проявляется слабее, чем при ламинарном. Теоретическое исследование турбулентных течений в трубах с учетом естественной конвекции проведено в 111]. [c.125]

    С. Теплообмен при ламинарном течении. Задачи, связанные с гидродинамикой и теплообменом при ламинарном течении, являлись предметом аналитических исследований в течение многих лет. В [1] собраны имеющиеся в литературе аналитические решения задач теплообмена при ламинарной вынужденной- конвекции жидкости в круглых и некруглых трубах при различных граничных условиях. Поэтому в последующих разделах представлены только наиболее интересные с инженерной точки зрения решения. [c.234]

    Для случаев совместного влияния сил вынужденной и свободной конвекций при подъемном течении в вертикальной трубе /4=+1, и противоположного влияния при опускном течении в вертикальной трубе А= . Противоположное влияние сил вынужденной и свободной конвекций наблюдается при подъемном течении в охлаждаемых каналах или при опускном течении — в обогреваемых. Уравнение (36) можно использовать при значениях параметра (7 щ,—Ть, ш)/(7 и,—оиО<3. Числа Прандтля Рга, и Грасгофа Ог , рассчитывают по значениям параметров физических свойств, определенным по температуре стенки, [c.236]

    В. Область двухфазной вынужденной конвекции. Дальше в испарительной трубе образуется кольцевой поток н этот режим течения занимает большую часть канала. Жидкость находится у нагреваемой стенки, и необходимо оценить эффекты переноса массы в жидкой пленке и паровом ядре. В [5] эти эффекты проанализированы детально. [c.419]


    Неплотно установленные ленточные вставки использовались при опускном течении в вертикальной трубе испарителей для обессоливания морской воды [38]. Эти вставки также эффективны для прямоточных испарителей криогенных жидкостей [39] или парогенераторов [40, 41], так как они выгодно воздействуют во всех режимах. Парогенераторы со спиральными трубами имеют преимущества ввиду их компактности и высокой теплопередающей характеристики. Интенсификация кипения сильно зависит от геометрических и режимных условий [42, 43]. Умеренные улучшения а (среднего по поверхности) получены для кипения при вынужденной конвекции, причем интенсификация усиливается с уменьшением диаметра спирали. В области недогрева q ниже, чем для сравнимой прямой трубы однако q или Х . обычно существенно выше, чем в случае прямой трубы при паросодержаниях на выходе больше 0,2. Теплоотдача в закризисной области также улучшается. [c.425]

    Первоначально конструкция трубчатой печи была весьма несовершенна печь имела низкий коэффициент полезного действия (к. п. д.), поверхность нагрева в ней использовалась мало, тепло трубам передавалось только конвекцией, радиация отсутствовала. С течением времени конструкция печи совершенствовалась. В настоящее время на нефтеперерабатывающих заводах эксплуатируются высокопроизводительные трубчатые печи, в которых нагреваемый нефтепродукт получает за счет радиации 70—80% всего поглощаемого тепла. [c.69]

    Скорость циркуляции за счет естественной конвекции можно вычислить таким же способом, как и скорость циркуляции за счет принудительной конвекции. В схеме замкнутого типа движущая сила определяется разностью плотностей теплоносителя в восходящем и нисходящем участках если же используется открытая система с вертикальной трубой, то движущая сила определяется разностью плотностей теплоносителя в выводной трубе и окружающей среды. Легко показать, что максимальная скорость циркуляции будет достигнута, если в основание горячего трубопровода поместить нагреватель, а в верхней части нисходящего холодного трубопровода — холодильник. Поскольку режим течения на отдельных участках может быть как ламинарным, так и турбулентным, для каждого элемента системы необходимо определить коэффициенты трения и теплоотдачи. [c.64]

    Конвективный перенос теплоты происходит вместе с переносом вещества при конвекции в газе и жидкости. При ламинарном течении жидкости по трубе и постоянной температуре стенки теплообмен аппроксимируется формулами (с1 и Г — диаметр и длина трубы)  [c.261]

    Уравнения (1У-23) и (1У-24) учитывают лишь теплопроводность через пленку пара на границе стенки трубы и кипящего пропана или бутана. При определении коэффициента теплоотдачи от труб подогревателя к кипящему пропану или бутану излучением и вынужденной конвекцией можно пренебречь, так как температура стенки и скорость течения жидкости, омывающей трубы, невелики. [c.180]

    В горизонтальных трубах направления вынужденного течения и подъемных сил взаимно перпендикулярны. В результате взаимодействия вынужденного течения вдоль оси канала и поперечной свободной конвекции температурное поле и поле скорости не являются осесимметричными. На верхней образующей трубы при нагревании и на нижней при охлаждении потока теплоотдача наименьшая. Но средняя по сечению теплоотдача и в этих условиях может быть выше, чем при чисто вязкостном течении. [c.165]

    Эта задача смешанной конвекции исследована, вероятно, наиболее подробно, поскольку она часто встречается в теплообменниках и ядерных реакторах. Влияние естественной конвекции на характеристики течения существенно зависит от ориентации трубы. Выталкивающие силы могут способствовать или противодействовать вынужденному течению в зависимости от направления потока и тепловых граничных условий. При ламинарном режиме течения способствующие выталкивающие силы приводят к интенсификации теплооб- [c.626]

    В работе [5] предложен механизм, позволяющий объяснить это явление. При заданной плотности теплового потока на поверхности разность температур стенки трубы и протекающей в ней жидкости определяется скоростями конвекции и изменением коэффициента температуропроводности жидкости. При ламинарном режиме течения эффективный коэффициент температуропроводности является постоянным (не считая зависимости от температуры) и равным молекулярному коэффициенту температуропроводности. Однако для турбулентного течения его величина примерно на порядок больше и резко изменяется при удалении от стенки. На рис. 10.6.7 дано качественное описание профилей скорости и напряжения трения в турбулентном смешанно-конвективном потоке. В ламинарном течении, как показывают экспериментальные данные, единственным эффектом является искажение этих профилей. Аналогичный сдвиг профилей возникает и в турбулентном течении. Однако в этом случае доминирует существенно более высокий турбулентный коэффициент температуропроводности. [c.632]


    Были найдены критерии, определяющие границы между режимами естественной и смешанной конвекции, а также между режимами смешанной и вынужденной конвекции. В работе [101] представлен обзор всех полученных ко времени написания работы данных и предложены критерии, позволяющие найти границы между режимами естественной, смешанной и вынужденной конвекции в условиях как ламинарного, так и турбулентного течения. Отдельно были рассмотрены горизонтальные и вертикальные трубы. [c.634]

    В вертикальных внутренних смешанно-конвективных течениях, рассмотренных в разд. 10.6, выталкивающие силы либо действуют в одном направлении с вынужденным потоком, либо противодействуют ему. В таком случае выталкивающие силы и, следовательно, результирующие характеристики переноса симметричны относительно оси трубы или средней плоскости между двумя поверхностями, расположенными параллельно друг другу. Однако на горизонтальные внутренние течения естественная конвекция оказывает иное влияние, поскольку выталкивающие силы действуют перпендикулярно направлению вынужденного потока. При возрастании выталкивающих сил симметричное вынужденное течение, наблюдающееся в случае отсутствия естественной конвекции, существенно искажается. В случае течения [c.641]

    Рассмотрим вынужденное течение в горизонтальной трубе с постоянной температурой стенки to, которая выше температуры жидкости во входном сечении трубы tu Поскольку вблизи стенки тепло передается жидкости, начинается вторичное течение. В окрестности входного сечения влияние естественной конвекции на теплообмен остается слабым. Однако при движении по потоку оно усиливается и становится максимальным, когда достигается максимум температуры, обусловленный нагревом все большей части жидкости. Затем это влияние ослабевает, когда средняя температура жидкости приближается к температуре стенки. [c.642]

    В работе [98] представлены результаты экспериментального исследования ламинарного смешанно-конвективного течения воздуха в нагреваемой горизонтальной трубе круглого сечения с изотермической стенкой. Был использован ненагреваемый начальный участок для обеспечения условий развития профиля скорости перед входом воздуха в нагреваемую секцию. Экспериментальные данные были получены в диапазонах 1 << Gr < <С 1000 и 100 С Re < 900. Было отмечено, что вторичное течение, обусловленное естественной конвекцией, накладывается на основное и вызывает повышение тепловых потоков. При низких числах Рейнольдса длина начального теплового участка уменьшается. Было подчеркнуто, что обобщить результаты измерения теплового потока довольно сложно. [c.644]

    В работе [132] проведен расчет влияния естественной конвекции на первоначально полностью развитое ламинарное течение в горизонтальной изотермической трубе. При больших числах Прандтля численные результаты были получены для Ра < [c.647]

    При неодинаковой температуре в сечении возникает естественная конвекция и создается подъемная сила. Это влияет на п[)офиль скорости, причем характер изменения профиля скорости зависит от того как расположена труба, вертикально или горизонтально, и совпадают ли направления свободного и вынужденного движений или они противоположны. Для вертикальной трубы в случае совпадения направлений свободного и вынужденного течений (при охлаждении капельной жидкости и подаче ее сверху или нагреве жидкости и подаче ее снизу) у стенки трубы скорость возрастает, а в центре уменьшается (рис. 1.7, а). В случае противоположно направленных свободного и вынужденного течений (при охлаждении капельной жидкости и подаче ее снизу или нагревании жидкости и подаче ее сверху) скорость у стенки трубы становится меньше, а в центре больше (рис. 1.7, 6). [c.21]

    Влияние естественной конвекции на течение в горизонтальных трубах. Выше рассматривались только изотермические течеиия в трубе. Ес, и же в результате вязкой диссипации илн теплообмена между стенками трубы и жидкостью формируется радиальный профиль температуры, то при малых числах Рейнольдса или больших перепадах температуры важную роль может играть естественная конвекция, развивающаяся на фоне основ1гого тече- [c.124]

    Рнс. 8. Сравнение результатов, полученных по (1) п (3), с частичным использованием уравнений (10) и (12) для полностью развитого ламинарного течения в однородно обогреваемой вертикальной трубе в условиях совпадения по направлению сил свободной и вынужденной конвекций. Точки — результаты экспериментоа [8. 9  [c.318]

    С. Вынужденная конвекция. Пассившле методы. Данное обсуждение ограничено процессами интенсификации теплообмена внутри труб, которые имеют в основном круглое поперечное сечение. Соответствующая информация по внешним течениям, направленным перпендикулярно или параллельно трубам, приводится в 2.5,3 и 2,8,4. [c.323]

    Ниже рассмотрен случай, когда поток обтекает трубу или цилиндр под действием вынужденной, а не свободной конвекции (см. 2.7.2). На фотографиях, которые получены в [1], хорошо видны режимы потока при подъемном течении воды с температурой, близкой к насыщению, вокруг однородно нагреваемой цилиндрической трубы. При умеренных тепловых потоках, обычно около 20% от критической тепловой нагрузки, в спутной струе за цилиндром образуется паровая полость. Сначала эта полость не является сплошной по длине цилиндра, но с ростом теплового потока увеличение длины полости в напранлетш течения приподит к образованию однородной полосы пара. Увеличение скорости от 0,4 до 1,5 м/с или диаметра трубы от 0,254 до 4,8 мм также вызывало образование больщой стабильной паровой полости за цилиндром. При этих условиях жидкость, достигающая нерхней половины цилиндра, движется между паровыми пузырями и поверхностью нагрева, когда пузыри попадают п полость спутной струи. При низких тепловых потоках жидкости больше подводится, чем испаряется, и избыток уносится в полость. Критический тепловой поток достигается, когда подводимой жидкости становится недостаточно для охлаждения верхней половины цилиндра. [c.406]

    Уравнения (2. 35) и (2. 37) учитывают лшпь теплопроводность через пленку пара на границе между стенкой трубы и кипящим нронаном или бутаном. При определении коэффициента теплоотдачи от стенки труб к кипящему пропану или бутану можно пренебречь излучением и вынужденной конвекцией, так как температура стенки и скорость течения жидкости, омывающей трубы, нецел икм. [c.75]

    Чаще всего пленочный коэффициент теплопередачи для случая чистой конвекции при течении дымовых газов перпендикулярно пучку труб, расположенных в шахматном порядке, вычисляют по эмпирическому уравнению Монрада [14]  [c.58]

    Поскольку эта задача имеет большое практическое значение, исследования характеристик течения и теплообмена в горизонтальной трубе, начатые Гретцом, получили широкое продолжение (см. [155]). Впервые количественные результаты относительно влияния однонаправленной выталкивающей силы были получены Кольбурном [26], который предложил учитывать это влияние, умножая тепловой поток на некоторую функцию числа Грасгофа. Позднее было получено соотношение, позволяющее учитывать влияние переменности теплофизических свойств жидкости [160]. Справедливость корреляционных соотношений, предложенных в двух указанных работах, была поставлена под сомнение в работе [95], где отмечалось, что они приводят к усилению влияния естественной конвекции при повышении скорости вынужденного течения, а это противоречит [c.642]

    В работе [108] осуществлено аналогичное экспериментальное исследование с целью определить влияние естественной конвекции на теплообмен при течении воздуха в горизонтальной трубе при постоянной плотности теплового потока на стенке. Был сделан вывод, что при Re Ra = 10" вторичное течение становится весьма интенсивным и образуется пара симметричных горизонтальных вихрей. При Re Ra = 10 естественная конвекция оказывает заметное влияние на теплообмен в ламинарном течении. Было найдено, что критическое число Гейнольдса, при котором происходит переход к турбулентному режиму течения, зависит как от числа Рэлея, так и от уровня турбулентности втекающей жидкости. При высоких уровнях турбулентности на входе в трубу и отсутствии нагрева критическое число Рейнольдса составляет около 2000 и возрастает при увеличении числа Рэлея. Это объяснялось влиянием вторичного течения, подавляющего турбулентность. С другой стороны, при низком уровне турбулентности на входе критическое число Рейнольдса заметно выше (примерно 7700) и снижается при увеличении числа Рэлея. Усиливающееся вторичное течение вызывает переход к турбулентному режиму при меньших Re. На основании экспериментальных данных предложено следующее корреляционное соотношение аля критического числа Рейнольдса при низком уровне турбулентности течения во входном сечении трубы  [c.644]

    Авторы работы [44] применили метод возмущений для расчета влияния естественной конвекции на полностью развитое ламинарное течение в горизонтальной трубе при граничном условии постоянной плотности теплового потока. Среднее число Нуссельта было существенно выше, чем в условиях только вынужденной конвекции. Отметим, что предположение о полностью развитом течении означает полностью развитое вынужденное течение на входе в нагреваемую секцию трубы. Подробный численный расчет полностью развитого ламинарного смешанноконвективного течения в горизонтальной трубе проведен в работе [119]. В случае постоянной плотности теплового потока на стенке получены решения для коэффициента теплоотдачи и падения давления в потоке воды при двух предельных граничных условиях. При высокой теплопроводности стенки трубы значения числа Нуссельта и коэффициента трения выше, чем при низкой теплопроводности стенки. Кроме того, в последнем случае отмечено существенное изменение температуры стенки по окружности трубы. Вслед за этими расчетами выполнено экспериментальное исследование [8], в котором проводились визуальные наблюдения и количественные измерения характеристик течения воды в нагреваемой стеклянной трубе. Было установлено, что естественная конвекция вызывает возникновение вторичного течения на сравнительно коротком участке трубы. [c.645]

    В работе [136] применялись конечно-разностные методы для расчета влияния неравномерного по окружности нагрева на ламинарное смещанно-конвективное течение в горизонтальной трубе. Подобные граничные условия возникают при работе труб солнечного коллектора. Был сделан вывод, что степень влияния естественной конвекции на характеристики ламинарного вынужденного течения существенно зависит от распределения плотности теплового потока по окружности стенки трубы. Если тепло подводится вдоль нижней половины трубы, а верхняя ее половина теплоизолирована, то возникает интенсивное вторичное течение, вызывающее повышение теплового потока. Если же нагревается верхняя половина трубы, а нижняя половина теплоизолирована, возникающее вторичное течение гораздо слабее. Эти расчетные результаты были подтверждены экспериментальными данными [153]. [c.647]


Смотреть страницы где упоминается термин Конвекция при течении в трубах: [c.381]    [c.81]    [c.97]    [c.128]    [c.186]    [c.319]    [c.319]    [c.95]    [c.163]    [c.25]    [c.638]   
Процессы химической технологии (1958) -- [ c.400 , c.405 ]




ПОИСК





Смотрите так же термины и статьи:

Конвекция



© 2024 chem21.info Реклама на сайте