Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диэлектрические свойства полимеро

    Диэлектрические свойства полимеров. Высокомолекулярные органические соединения принадлежат к диэлектрикам, т. е. они практически не проводят электрического тока при обычных разностях потенци,алов, и только при очень большом напряжении поля может происходить так называемый пробой. Благодаря возможности изготовления полимеров с хорошим сочетанием диэлектрических свойств при высокой устойчивости к воздействию внешней среды, прн хороших механических свойствах и пр. их широко используют в качестве электроизолирующих материалов в электротехнике. [c.594]


    Диэлектрические свойства полимеров 595 [c.595]

    Уравнения (УП.2), (УП.З) получены Дебаем, при условии, что все диполи в диэлектрике одинаковы и не взаимодействуют, и поэтому имеется одно время релаксации Однако в реальных диэлектриках, в частности, полимерах, процессам релаксации присуще распределение времен релаксации, описываемое релаксационным спектром . Тот факт, что диэлектрические свойства полимеров не могут быть точно описаны уравнением с одним значением времени релаксации был впервые принят во внимание Фуоссом и Кирквудом, которые прямым образом учли существование спектра времен релаксации Для полимеров . Учет распределения времени [c.235]

    При исследовании диэлектрических свойств полимеров особый интерес представляет оценка полярности кинетических единиц — элементарных диполей мономерных звеньев, так как такая информация помогает изучению строения соответствующих макромолекул [39, с. 339]. Обычно диполи в полимерах связаны ковалентно с основной цепью макромолекулы или с ее боковыми группами. Дипольный момент макромолекулы, позволяющий судить о ее гибкости, можно определить как векторную сумму составляющих векторов — дипольных моментов звеньев цепных молекул Wo  [c.242]

    Одним из структурных факторов, существенно влияющих на диэлектрические свойства полимеров, является изомерия повторяющихся звеньев. Например, полиметилакрилат (а) и поливинил- [c.246]

    Об этом же говорят и данные исследования динамических механических и диэлектрических свойств полимеров, показывающих присутствие широкого спектра времен механической и диэлектрической релаксации. Используя предположение о существовании широкого спектра времен корреляции, удается объяснить эффекты, наблюдаемые методом ЯМР, а также получить хорошее соответ ствие между данными исследования механических и диэлектрических свойств полимеров и результатами измерения времен Т] и тз. Еще одно применение импульсной техники связано с измерением коэффициентов самодиффузии в расплавах полимеров методом спинового эха. Зн ание коэффициента самодиффузии очень важно, [c.275]

    Исследование диэлектрических свойств полимеров в широких температурно-частотных диапазонах является одним из наиболее эффективных способов установления особенностей их строения. Однако отклик полимерной системы на воздействие электрического поля определенной частоты отнюдь не эквивалентен механическому отклику . Поэтому, хотя метод диэлектрических потерь может быть применен для выявления области стеклования или размягчения полимеров, температура максимума диэлектрических потерь может достаточно существенно отличаться от температуры структурного стеклования, так же как частота (при заданной температуре соответствующая максимуму) может отличаться от частоты механического стеклования. Именно несовпадение релаксационных переходов, отвечающих электрическим или механическим воздействиям, по температурной или частотной шкале дает дополнительную информацию об уровнях структурной организации полимеров. [c.183]


    Данные исследования диэлектрических свойств полимеров разного, строения свидетельствуют о возрастании энергии активации U с увеличением размеров кинетических единиц. [c.189]

    Такой процесс перехода к равновесию называется диэлектрической релаксацией и характеризуется временем релаксации т. Если к полимерному диэлектрику приложить переменное электрическое поле, то очевидно, что диэлектрические свойства полимера (в том числе и диэлектрическая проницаемость) будут зависеть от соотношения между частотой изменения приложенного электрического поля (О и временем диэлектрической релаксации т. [c.138]

    Поливинилхлорид эмульсионной полимеризации загрязнен трудно отмываемыми эмульгаторами и солями, вводимыми для коагуляции. Они отрицательно влияют на диэлектрические свойства полимера, поэтому такой поливинилхлорид для электрической изоляции не рекомендуется. [c.124]

    На рис. 57 показана зависимость тангенса угла диэлектрических потерь вулканизованного каучука от количества связанной серы. При увеличении содержания серы сначала диэлектрические свойства полимера ухудшаются, что вызывается повышением его полярности. Последняя отрицательно сказывается до тех пор, пока сохраняется подвижность отдельных участков макромолекул. Но после того как подвижность их утрачивается или становится ничтожно малой из-за образования значительного количества поперечных связей, дальнейшее присоединение серы не вызывает ухудшения диэлектрических свойств вулканизованного каучука. [c.190]

Таблица 15.12. Некоторые диэлектрические свойства полимеров Таблица 15.12. <a href="/info/1476962">Некоторые диэлектрические свойства</a> полимеров
    Некоторые диэлектрические свойства полимеров [c.520]

    Однако в других отношениях способы высокого давления имеют следующие преимущества а) отсутствие катализаторов, изготовление которых, как правило, является весьма трудоемким процессом (особенно изготов.ление алкилалюминиевых катализаторов) б) отсутствие растворителей, использование которых усложняет технологический процесс в) отсутствие в полиэтилене остатков катализаторов (уже следы которых резко ухудшают диэлектрические свойства полимеров и исключают возможность их использования в таких важных областях, как техника высоких частот) г) аппаратура более компактна, чем при работе при низких давлениях. [c.782]

    ДИЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ПОЛИМЕРОВ [c.165]

    Нет адекватно теории для предсказания диэлектрических свойств полимеров, поэтому все экспериментальные данные коррелируют с физическими, механическими и молекулярными характеристиками на чисто эмпирической основе. [c.165]

    Диэлектрические свойства полимеров [c.167]

    В исследовании диэлектрических свойств полимеров используют также метод термостимулированного разряда, которым измеряют ток деполяризации поляризованного образца. [c.169]

    В чем заключается релаксационный механизм физико-механических и диэлектрических свойств полимеров  [c.256]

    Из полученного образца выпиливают диск диаметром 50 мм и тол- шиной 2 мм и определяют диэлектрические свойства полимера (см. при ложение). [c.218]

    Недостаток латексной полимеризации заключается в том, что полимер всегда загрязнен остатками эмульгатора. Поскольку эмульгатор является электролитом, то присутствие его в полимере ухудшает диэлектрические свойства полимера. [c.59]

    Полимеры, у которых имеются полярные группы, проявляют диэлектрические свойства. Диэлектрические свойства полимеров [c.165]

    Однако это уравнение отражает рассматриваемую зависимость лишь в суммарной форме. В действительности эти с оотношения являются более сложными. Релаксация в той илн другой степени относится ко всем формам перемещения частиц в материале, но скорость релаксации их в данном полимере при одинаковых вйешних условиях может различаться в сильной степени. Перемещения электронов практически не задерживаются, перемещения же атомов и атомных групп и изменения их колебательного движения задерживаются в различной степени в зависимости от их массы и характера связи, а также степени связанности их с другими частицами. Это существенно влияет на диэлектрические свойства полимеров. То же относится и к перемещениям или изменениям конформации отдельных звеньев цепей и макромолекулы в целом, причем последние сильно зависят от степени полимеризации и от строения цепей. При повышении степени полимеризации скорость релаксации уменьшается. Еще больше усложняются эти соотнощения в полимерах, содержащих структурные единицы, различные по составу и строению, т. е. в сополимерах, привитых полимерах и пр. В общем существует некоторый комплекс времен релаксации, характеризующий различную скорость релаксации разных форм перемещения частиц в данном полимере. Кроме того, из внешних условий на скорость релаксации существенно влияет давление. При повышении давления увеличивается напряжение и соответственно уменьшается время релаксации. Это широко используется на практике при формовании изделий из полимерных материалов. Время релаксации зависит также от присутствия в полимере других веществ. Так, на введении в полимер специальных пластификаторов основан один из методов увеличения скорости релаксационных процессов. [c.581]


    Диэлектрические свойства полимера мало изменяются при повышении температуры до 150—IGO , механическая же прочность поликарбоната постепенно умепьп1ается с повышением температуры. В табл. 22 приведены данные об изменении предела прочности при растяжении к относительного удлинения в за висимости от температуры. [c.427]

    Исследование диэлектрических свойств полимеров — один из наиболее эффективных способов установления особенностей их строения. Диэлектрический метод оказывается пригодным как для полярных, так и неполярных полимеров (полиэтилен, полистирол, политетрафторэтилен и т. д.), поскольку полимеров, абсолютно лишенных полярных групп, практически не существует. В соответствии с корреляциями, рассмотренными в гл. I и И, для всех полимеров установлено два типа диэлектрических потерь ди-польно-сегментальные, связанные с подвижностью звеньев или большой совокупности их (кинетических сегментов) в электрическом поле, и дипольно-групповые, обусловленные движением, например, боковых полярных групп. Если в боковой цепи полимера содержатся полярные группы, способные ориентироваться в электрическом поле независимо друг от друга и имеющие разные времена релаксации, то наблюдается сложный пик дипольно-групповых потерь. Сегментальное движение в полимерах при температурах выше температуры стеклования кооперативно, так как подвижности сегментов данной цепи и сегментов соседних макромолекул взаимосвязаны. По этой причине в процесс ориентации вовлекаются области довольно больших размеров, чем и объясняются высокие значения кажущейся энергии активации сегментального движения. Ниже температуры стеклования Тс переход сегмента из одного равновесного положения в другое требует практически беС конечно большого времени, превышающего доступную продолжительность наблюдения. [c.243]

    Уравнения (7.2) и (7.3) получены Дебаем при условии, что все диполи в диэлектрике одинаковы и не взаимодействуют между собой, поэтому имеется одно время релаксации т. Однако в реальных диэлектриках, в частности полимерах, процессам релаксации присуще распределение времен Xi, описываемое релаксационным спектром. Тот факт, что диэлектрические свойства полимеров не могут быть точно описаны уравнением с одним т, был впервые принят во внимание Фуоссом и Кирквудом [7.2], которые прямым образом учли существование спектра времен релаксации для полимеров. Учет распределения времен релаксации в конденсированных системах, в которых отсутствуют дальнодействующие силы, сделан в теории диэлектрических свойств слабополярных систем. Если функция распределершя времен релаксации является симметричной, то для обобщенной диэлектрической проницаемости может быть использовано модифицированное уравнение Дебая вида [c.177]

    Рассмотрим на примере карборансодержащих полиарилатов проявление для диэлектрических свойств полимеров специфического эффекта, который в ряде случаев имеет место и для других веществ. В области реализации локальных процессов молекулярного движения при Г<Гс наблюдается явление, связанное с изменением vo в зависимости от энергии активации и, на что указывают высокие значения lgvmax, получающиеся при экстраполяции зависимостей lgvmax=/(7 ) в области температур Г- 0. Такое явление получило название компенсационного эффект (КЭФ). Аналитическая запись его выражается линейной зависимостью вида [c.190]

    Релаксация в той или другой степени относится ко всем формам перемещения частиц в материале, но скорости релаксации разных частиц в данном полимере при одинаковых внешних условиях могут сильно различаться. Скорость перемещения электронов практически не изменяется, перемещения же атомов и атомных групп и изменения их колебательного движения задерживаются в различной степени п зависимости от их массы и характера связи, а также степени связанности их с другими частицами. Это существенно влияет на диэлектрические свойства полимеров. То же относится и к перемещениям или изменениям расположения отдельных звеньев цепей и в особенности макромолекулы в целом. Скорость перемещения макромолекул сильно зависит от степени полимеризации и от строения цепей. При повышении степени полимеризации скорость релаксации уменьшаётся. Ещё больше усложняются эти соотношения в полимерах, содержащих струк- УрШе единицы различные по составу и строению, т. е. в сополимер ахТ привитых полимерах и пр. Для различных форм движения частиц в данном полимере время релаксации может сильно различаться, [c.219]

    Большинство полимеров относится к диэлектрикам. Однако их диэлектрические свойства лежат в широких пределах и зависят от состава и структуры макромолекул. Диэлектрические свойства в значительной степени определяются наличием, характером и концентрацией полярных групп в макромолекулах. Наличие у макромолекул галогенных, гидроксидных, карбоксидных и других полярных групп ухудшает диэлектрические свойства полимеров. Например, диэлектрическая проницаемость поливинилхлорида в [c.362]


Смотреть страницы где упоминается термин Диэлектрические свойства полимеро: [c.236]    [c.226]    [c.202]    [c.270]    [c.165]    [c.377]    [c.19]    [c.252]    [c.253]    [c.255]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.2 , c.165 , c.170 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.2 , c.165 , c.170 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.0 ]

Краткий курс физической химии Издание 3 (1963) -- [ c.598 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.0 ]

Пластификаторы (1964) -- [ c.137 , c.283 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние пластификаторов на диэлектрические свойства полимеров

Влияний структуры на диэлектрические свойства ЖК полимеров

Диэлектрические и механические потери в полимерах Щ Диэлектрические свойства полиарилатов ф Характеристики электрических релаксационных процессов Электретное состояние и термодеполяризация полимеров

Диэлектрические свойства

Диэлектрические свойства и строение полимеро

Диэлектрические свойства и строение полимеров

Диэлектрические свойства пластифицированных полимеров

Диэлектрические свойства полимеро время диэлектрической релаксации

Диэлектрические свойства полимеро диэлектрическая дисперсия

Диэлектрические свойства полимеро диэлектрическая проницаемость

Диэлектрические свойства полимеро емкость

Диэлектрические свойства полимеро коэффициент диэлектрических потер

Диэлектрические свойства полимеро определение структуры

Диэлектрические свойства полимеро приборы для измерения

Диэлектрические свойства полимеро тангенс угла диэлектрических потер

Диэлектрические свойства полимеро тангенс угла диэлектрических потерь

Диэлектрические свойства полимеро фактор рассеяния

Диэлектрические свойства полимеро эффективный дипольный момент

Диэлектрические свойства полимеров

Диэлектрические свойства сшитых полимеров

Диэлектрические свойства фторсодержащих полимеров. А. Бэр

Касторовое масло влияние на диэлектрические свойства полимеров

Пластификаторы влияние на механические и диэлектрические свойства полимеров

Пластификация и диэлектрические свойства полимеров

Полимеры губчатые диэлектрические свойства

Феноменологическая теория диэлектрических свойств полимеро



© 2025 chem21.info Реклама на сайте