Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Релаксация полимеров время

    Однако для каждого полимера суш,ествует такой интервал температур, в котором время релаксации и время развития деформации соизмеримы. В этой промежуточной области температур (переходная область из стеклообразного в высокоэластическое состояние) наблюдается резкая зависимость амплитуды деформации от частоты действия силы. Если время действия силы больше времени релаксации т, деформация успевает развиться. Если время действия силы меньше времени релаксации х, высокоэластическая деформация не успевает развиться. Так, если при некоторой температуре и частоте действия силы шз в материале развивается деформация, близкая к равновесной, то при этой же температуре и частоте действия силы Ш1 (рис. V. 13), амплитуда деформации может быть очень мала и материал ведет себя как стеклообразное тело. [c.150]


    Подобный подход может быть назван релаксационно-термодинамическим или термокинетическим при всей его общности наиболее целесообразно применять его именно к полимерам, так как для них специфично наличие многих уровней структурной организации. Каждый из этих уровней можно характеризовать своим (средним) временем структурной релаксации, и время это т сопоставимо с длительностью воздействия 1 на систему. Именно два [c.16]

    Существенное влияние на релаксационные диэлектрические потери оказывает также пластификация полимеров. С ростом концентрации пластификаторов в полимере время релаксации, как правило, уменьшается, а область максимума дипольно-сегментальных потерь сдвигается в сторону низких температур, поскольку пластификация, как правило, существенно снижает температуру структурного стеклования. [c.248]

    Как мы уже отмечали, времена высокоэластической релаксации полимеров в стеклообразном состоянии очень велики. Поэтому при приложении сравнительно небольших напряжений стеклообразный полимер не может деформироваться по механизму высокоэластичности. Для объяснения способности полимерных стекол к большим деформациям при приложении высоких нагрузок необходимо учесть, что время релаксации, вообше говоря, является функцией не только температуры, но и напряжения и при больших напряжениях может заметно уменьшаться. [c.156]

    Исходя из зависимости релаксационного модуля Е от времени, определяют времена релаксации полимера. [c.165]

    Образец полимера Температура опыта Т. °С Времена релаксации полимеров  [c.166]

    В процессе утомления в каждом цикле деформации выделяется некоторое количество теплоты и, если теплоотвод затруднен, а подвод тепла за счет механической энергии велик, то разогрев может быть велик. Так, температура в автопокрышке летом при быстром движении автомобиля может превышать 100°С. Тепловыделение особенно велико, когда время релаксации полимера близко к продолжительности цикла, т. е. крите )пй 0= 11 близок к еди- [c.211]

    В результате П. п. уменьшаются времена релаксации полимеров, возрастает их способность к большим высокоэластичным и вынужденно высокоэластичны.м деформациям (см. Стеклообразное состояние), существенно снижаются упругие гистерезисные потери и выделение тепла при многократных деформациях резин, а также т-ры хрупкости стеклообразных полимеров. Модуль упругости, прочность и долговечность полимера непрерывно снижаются с увеличением концентрации пластификатора. В ряде случаев при введении совместимых с полимером низкомол. в-в модуль упругости [c.563]


    Молекулярная масса цепей сетки, определенная импульсным методом ЯМР, сравнима с результатами, получаемыми из данных равновесного набухания и растяжения [27]. Однако хорошая корреляция наблюдается только для образцов с Мс менее 10000. Такие параметры сетки, как величина М доля свисающих цепей, время спин-спиновой релаксации и время корреляции, обнаруживают одинаковые зависимости от содержания геля в полимере. [c.516]

    Для экспериментальной проверки полученных соотношений были рассчитаны спектры времен релаксации для образца блок-сополимера полистирола с полибутадиеном с содержанием полистирола 62%. Эксперименты были выполнены при различных больших деформациях [55]. Результаты расчета приведены в табл. 5.1. Видно, что при длительности релаксационного процесса 180 мин экспериментальные кривые описываются пятью временами релаксации. При этом времена п и Т2 практически не зависят от деформации е и составляют в среднем <Т1> = 12,8 с и (т2>= 1,34-10 с. Остальные времена релаксации качественно согласуются с найденными зависимостями (5.80), хотя наблюдается значительное количественное расхождение. Это объясняется принятыми при выводе этих формул допущениями и упрощением исходных дифференциальных уравнений. Таким образом, полученное решение показывает, что предложенная модель правильно передает ход экспериментальных кривых и позволяет объяснить закономерное появление спектра времен релаксации. На самом деле поведение системы может характеризоваться двумя основными временами релаксации. Остальные времена являются комбинацией этих двух основных времен и зависят от деформации и упругих характеристик полимера. [c.176]

    На рис. III. 48 представлены отношения D1/D2 для разных температур, причем в качестве основы для сравнения были взяты размеры частиц с поверхностным слоем при 90 °С. На построенной зависимости в области, в которой наблюдается максимум механических потерь, также обнаруживается максимум. Такое совпадение связано с тем, что при этой температуре время проведения эксперимента сопоставимо со средним временем релаксации полимерной матрицы. (Выше уже отмечалось, что толщина поверхностного слоя зависит от частоты воздействия.) При температуре, соответствующей максимуму механических потерь, времена релаксации в поверхностном слое больше характерного времени экспериментальной шкалы, поэтому этот слой не может существенно деформироваться. В то же время на больших удалениях от границы раздела фаз времена релаксации полимера сопоставимы с временем воздействия, и поэтому общая деформация материала определяется деформацией этих более удаленных слоев. [c.148]

    Нетрудно показать, что это вытекает из определения как температуры, при которой вязкость полимера принимает значение, равное 10 Па-с. Действительно, так как сдвиговую вязкость полимера можно представить в виде г] = Ох (где С — модуль сдвига, а х — время релаксации), то время релаксации, обусловленное сегментальной подвижностью, равно х=г 10. Так как Гg по определению является граничной точкой стеклообразного состояния, то при Tg величина т] = 10 2 Па-с, а [c.94]

    Значения температуры стеклования, найденные из акустических, диэлектрических и других физических измерений, в которых используются периодически изменяющиеся поля, накладываемые на полимер, могут зависеть от частоты (О изменения этих полей и возрастают с ростом (О. Эта зависимость связана с явлением механического стеклования 4]. Механическое стеклование обусловлено релаксационным характером процесса перехода из высокоэластического состояния в стеклообразное. В соответствии с этим величина любого измеряемого при периодических воздействиях параметра, характеризующего релаксационный процесс, определяется произведением г или числом Деборы )=т// (где т — время релаксации, а (— время наблюдения). С точки зрения релаксационных представлений различие между аморфным твердым телом и жидкостью можно выразить количественно с помощью числа Деборы. У жидкостей, имеющих очень малые времена релаксации, число Деборы 0<С1, у аморфных твердых тел /)>1. [c.95]

    В разных системах время релаксации различно. Так, в обычных низкомолекулярных жидкостях время релаксации составляет примерно 10 —10 ° с. Для полимеров время релаксации достигает нескольких суток и более. При исследовании релаксационных явлений большое значение имеет соотношение между временем релаксации и продолжительностью опыта. Если время релаксации во много раз меньше продолжительности опыта, то релаксационный характер явления не будет замечен экспериментатором и он будет считать, что имеет дело с обычным мгновенным переходом от одного состояния к другому. Напротив, если время релаксации во много раз больше продолжительности опыта, равновесное состояние не будет достигнуто. Типичный пример эффектов такого рода— петли гистерезиса, наблюдающиеся при снятии деформационных кривых в режиме нагрузка — удлинение и разгрузка — удлинение. [c.30]


    Однако почти во всех опубликованных измерениях ЯМР полимеров времена релаксации Ti и Гг были вычислены по ширине полос и насыщению или приводилась только ширина полос. Обычно исследовали природу молекулярного движения, о которой судили по сужению линий. [c.420]

    Остается еще установить, однако, действительно ли наиболее устойчивое состояние достигается при реальных условиях кристаллизации. Для этого нужно принять во внимание, что рост кристалла происходит с конечной скоростью. Хорошо известно, что при всех переходах жидкость — кристалл действуют кинетические факторы, так что достигнутое конечное состояние представл-яет собой некоторый компромисс между равновесием и необходимостью развития процесса с конечной скоростью. Это верно как для мономерных, так и полимерных веществ. Далее, в разбавленном растворе полимера время релаксации больших сегментов слишком велико по сравнению с высокой скоростью наслаивания цепей на растущей грани. При этом молекулярный вес должен существенно влиять на скорость роста [61]. Аномально низкие энтальпии и плотности пластинок, полученных из разбавленных растворов, отчетливо показывают, что в реальных условиях кристаллизации не достигается наиболее устойчивое состояние. [c.305]

    В результате П. уменьшаются времена релаксации полимера. Для пластифицированных полимеров, как и для непластифицированных, функция а , представляющая собой отношение времен релаксации при данной темп-ре Т и темп-ре приведения Tg, следует ур-нию Вильямса — Лэндела — Ферри (см. Суперпозиции принцип температурно-временной)  [c.314]

    Условились временем релаксации считать время, в течение которого напряжение (в опыте I) уменьшается в е раз по сравнению с первоначальным (е — постоянное число, равное 2,7,— основание Неперовых логарифмов). Время релаксации является хорошей характеристикой не только механических, но и диэлектрических свойств полимера. Это время возрастает с повышением степени полимеризации и уменьшается под влиянием давления и температуры. Последнее особенно важно, когда хотят найти оптимальные условия для формирования различных изделий из полимеров. [c.339]

    Этим объясняется, что механической пластификации могут подвергаться только те технические аморфные полимеры, у которых температура стеклования лежит сравнительно высоко — не ниже 60—70°. Только у таких полимеров время релаксации прн обычных температурах будет практически бесконечным. [c.144]

    В отличие от низкомолекулярных упругих тел, например металлов, у которых состояние равновесия при деформации достигается почти мгновенно, у полимеров переход в такое состояние запаздывает относительно приложенной нагрузки, и это опоздание может быть весьма значительным. Процесс запаздывающего перехода в новое состояние равновесия, соответствующее деформирующему усилию, называется релаксацией, а время протекания этого процесса — временем релаксации. Величина релаксации зависит от структуры полимера и скорости приложения нагрузки, а для переменных нагрузок также и от частоты изменения нагрузки. [c.26]

    Время релаксации полимеров в высокоэластическом состоянии обычно велико. На рис. 1-13 приведена зависимость деформации полимеров от времени при различных температурах. При более [c.26]

    А. П. Александровым и сотрудниками было показано, что образец полиметилметакрилата, имевший при температуре ниже температуры стеклования определенную остаточную деформацию, после нагревания выше Гс приобретает исходные форму и размеры. Обратимый характер больших деформаций, наблюдающийся у высокомолекулярных стекол, заставляет предположить соблюдение в стеклообразном состоянии тех же закономерностей, что и в высокоэластическом состоянии. Это весь.ма правдоподобно, так как стеклование не является фазовым переходом (глава VI) и полимер обладает одинаковой структурой при температуре выше и ниже Г с- Различие состоит лишь в том, что время релаксации полимера в стеклообразном состоянии очень велико. Поэтому при приложении сравнительно небольших напряжений стеклообразный полимер не может сильно деформироваться. [c.227]

    В течение длительного времени полагали, что значительные деформации, вызванные большими усилиями, являются результатом процессов течения, которые называли холодным течением . Однако течение, т. е. взаимное перемещение макромолекул, в стеклообразном состоянии маловероятно. Так, было показано [2—3], что образец полиметилметакрилата, имеющий при температуре ниже температуры стеклования определенную остаточную деформацию, после нагревания выше Тс приобретает исходные форму и размеры. Обратимый характер больших деформаций, наблюдающийся у высокомолекулярных стекол,, заставляет предположить, что для стеклообразного состояния характерны те же закономерности, что и для высокоэластического. Это весьма правдоподобно, так как стеклование не является фазовым переходом (см. гл. 6), и полимер имеет одинаковую структуру при температуре выше и ниже Тс. Различие состоит лишь в том, что время релаксации полимера в стеклообразном состоянии очень велико. Поэтому при приложении сравнительно небольших усилий стеклообразный полимер не может сильно деформироваться. [c.182]

    Гуревича и Эйринга. Из этих представлений следует, что время релаксации является функцией не только температуры, но и напряжения. Внешнее напряжение резко понижает время релаксации полимера путем снижения энергии активации структурных превращений [1]. [c.10]

    В области вынужденно-эластических деформаций удлинения с уменьшением напряжений вначале возрастают, однако при дальнейшем снижении напряжений они проходят через максимум. В этом состоянии полимера времена релаксации ч и разрушения, очевидно, соизмеримы. [c.104]

    Некоторые методы переработки полимеров"рассчитаны на то, что формование надмолекулярных структур (структурирование) будет происходить непосредственно в самом процессе переработки. Примерами таких технологических процессов являются формование волокна и экструзионно-выдувное формование с предварительной вытяжкой. В первом примере волокно после фильерного формования для получения нужной структуры должно быть подвергнуто холодной вытяжке (см. разд. 3.7). Во втором примере характер ое время релаксации полимера при температуре формования должно быть достаточно велико, для того чтобы в материале до начала ох. лаждения сохранилась большая часть созданной в процессе формования двухосной ориентации. Таким свойством обладают аморфные полимеры при температуре, несколько превышающей температуру стеклования. Можно назвать эту способность структурируемостью она зависит как от реологических характеристик расплава полимера, так и от его механических свойств при Тд < Т < Г (. [c.615]

    Сравнение условий сужения линии ЯМР с проявлением структурного стеклования при охлаждении полимера со стандартной скоростью 3 К/мин показывает, что 7 с нельзя отолсдествлять с т сун(, которая может быть сопоставлена с температурой стеклования полимеров в периодических силовых полях. При этом времени корреляции Тс может соответствовать время релаксации полимеров во внешнем поле. В ряде случаев обнаружено совпадение Тсут с температурой механического стеклования, измеренной ультразвуковым [c.223]

    Релаксация в той или другой степени относится ко всем формам перемещения частиц в материале, но скорости релаксации разных частиц в данном полимере при одинаковых внешних условиях могут сильно различаться. Скорость перемещения электронов практически не изменяется, перемещения же атомов и атомных групп и изменения их колебательного движения задерживаются в различной степени п зависимости от их массы и характера связи, а также степени связанности их с другими частицами. Это существенно влияет на диэлектрические свойства полимеров. То же относится и к перемещениям или изменениям расположения отдельных звеньев цепей и в особенности макромолекулы в целом. Скорость перемещения макромолекул сильно зависит от степени полимеризации и от строения цепей. При повышении степени полимеризации скорость релаксации уменьшаётся. Ещё больше усложняются эти соотношения в полимерах, содержащих струк- УрШе единицы различные по составу и строению, т. е. в сополимер ахТ привитых полимерах и пр. Для различных форм движения частиц в данном полимере время релаксации может сильно различаться, [c.219]

    У полимеров в отличие от низкомолекулярных соединений как отдельный вид состояния вещества рассматривают релаксационные (физические) состояния. У низкомолекулярных соединений границы физических состояний совпадают с границами афегатных состояний. Под физическим состоянием полимера понимают состояние, равновесное для данной температуры. Физические состояния определяются особенностями подвижности атомов, фупп атомов, звеньев, сегментов, макромолекул и элементов надмолекулярной структуры при данной температуре. Переходы из одного равновесного состояния в другое являются релаксационными процессами, т. е. при изменении температуры данное равновесное состояние полимера уже становится неравновесным, а переход из неравновесного состояния в новое равновесное в результате тепловых движений происходит во времени. Это время характеризует скорость релаксационного процесса. У низкомолекулярных соединений оно очень мало и им пренебрегают. У полимеров время релаксации может быть очень большим и оказывать существенное влияние на их поведение. Поэтому равновесные физические состояния называют релаксационными состояниями. Повышение температуры, понижение энергии межмолекулярного взаимодействия и уменьшение размеров элементов надмолекулярной структуры приводят к ускорению релаксационных процессов, т. е. к ускорению достижения системой равновесного состояния. [c.147]

    Процессы перехода к состоянию термодинамического равновесия в полимерах осуществляются за счет самых различных видов молекулярного движения. Каждому виду молекулярного двил екия соответствует определенный релаксационный процесс, который характеризуется своим временем релаксации. Для того чтобы наблюдать и исследовать какой-либо релаксационный процесс в полимерах и соответствующий ему тип молекулярного двил<еиия, необходимо, чтобы время воздействия на полимер (или время наблюдения) было соизмеримо со временем релаксации. Следовательно, для изучения релаксационных процессов акустическими методами (а это один из наиболее распространенных методов их изучения) необходимо, чтобы период звуковых колебаний был того же порядка, что и время релаксации полимера. Рассмотрим линейный аморфный полимер, находящийся в высокоэластическом состоянии. В этом случае число возможных конформаций, которые мол ет принимать каждая макромолекула, достаточно велико, и в полимере реализуются весьма разнообразные виды молеку-лг рного движения. Пусть в таком полимере распространяются звуковые колебания, частоту которых можно изменять в широких пределах. Если частота звуковых колебаний очень мала, т. е. период звуковых колебаний очень велик по сравнению с временем релаксации са- . ых больших кинетических элементов макромолекул, то энергия звуковых колебаний, которую получат за период элементарный объем полимера, будет быстро перераспределяться по всему объему полимера вследствие сегментальной подвижности микроброуновского типа (диффузии сегментов макромолекул). В этом случае процесс рассеяния энергии носит квазиравновес-ный характер, механические потери невелики, и полимер быстро восстанавливает свои размеры и форму пос.п -снятия приложенного внешнего напрял ения. Естественно, что и динамический модуль упругости полимера (а также скорость звука в нем) будет очень малым, т. е. такого л<е порядка, как и жидкости. [c.254]

    Другим примером, иллюстрирующим явление памяти полимера, является последовательная деформация образца сначала в одном направлении, а затем в противоположном. После снятия нагрузки образец сначала пройдет мимо состояния равновесия в соответствии с первым режимом нагружения и затем начнет деформироваться в противоположном направлении, лишь теперь приближаясь к равновесному (исходному) состоянию. Это объясняется тем, что полимер обладает широким набором времен релаксации малые времена релаксации обус-ловливают начальное движение образца, а большие времена релаксации—его последующую деформацию. [c.65]

    Угол б характеризует долю механич. энергии, переходящую в тепло, и паз. углом мехаппч. потерь. При измереииях по А. — Л. ч.-т. м. исследуется зависимост], деформации В от темп-ры и частоты и определяется время релаксации полимера X и зависимость т от темн-ры. На рис. 2 приведены расчетные кривые зависимости В от темп-ры нри разных частотах, полученные по ф-ле (9) в предположении экспоненциальной зависимости времени релаксации от температуры. Верхняя пунктирная кривая отвечает температурной зависимости равновесной высокоэластич. деформации Точка [c.32]

    Взаимосвязь влияния времени, и температуры на механические свойства может быть понята из анализа максвелловской модели, состоящей из пос.ледовательно соединенных пружины и демпфера. Для простоты будем считать, что эта модель правильно передает особенности механических свойств полимеров. Время релаксации такой модели т равно у К, где т] — вязкость жидкости в демпфере, а /С — модуль упругости пружины. Если длительности нагружения больше, чем т, то поведение модели определяется свойствами демпфера. Если же нагружение происходит за время, меньшее т, модель ведет себя как упругий элемент. Поскольку с понижением температуры вязкость увеличивается, это приводит и к увеличению времени релаксации. Поэтому понижение температуры приводит к тому, что модель ведет себя как упругий элемент только при больших длительностях нагружения. Естественно, таким образом, что понижение температуры компенсируется повышением длительности нагружения. [c.390]

    В самом деле, в приведенных опытах в широких пределах варьировались времена релаксации полимера путем изменения температуры, тогда как разрушающие напряжения, а следовательно, и скорости разрушения, изменялись в сравнительно узком интервале. Однако опыты можно поставить иначе испытать полихмёр, находящийся в высокоэластическом состоянии при постоянной температуре (не меняя периода релаксации), но в широком интервале напряжений (скоростей разрушения). В этом случае мы вправе ожидать получения единой зависимости относительных удлинений при разрыве от напряжений в форме кривой, представленной на рис. 2.41,6. [c.104]


Смотреть страницы где упоминается термин Релаксация полимеров время: [c.488]    [c.66]    [c.151]    [c.134]    [c.210]    [c.242]    [c.313]    [c.338]    [c.202]    [c.34]    [c.654]    [c.31]    [c.106]    [c.27]    [c.209]   
Физика полимеров (1990) -- [ c.258 ]




ПОИСК





Смотрите так же термины и статьи:

Релаксация время

время релаксации Сжу время релаксации при



© 2025 chem21.info Реклама на сайте