Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диэлектрические свойства полимеро время диэлектрической релаксации

    Уравнения (УП.2), (УП.З) получены Дебаем, при условии, что все диполи в диэлектрике одинаковы и не взаимодействуют, и поэтому имеется одно время релаксации Однако в реальных диэлектриках, в частности, полимерах, процессам релаксации присуще распределение времен релаксации, описываемое релаксационным спектром . Тот факт, что диэлектрические свойства полимеров не могут быть точно описаны уравнением с одним значением времени релаксации был впервые принят во внимание Фуоссом и Кирквудом, которые прямым образом учли существование спектра времен релаксации Для полимеров . Учет распределения времени [c.235]


    Условились временем релаксации считать время, в течение которого напряжение (в опыте I) уменьшается в е раз по сравнению с первоначальным (е — постоянное число, равное 2,7,— основание Неперовых логарифмов). Время релаксации является хорошей характеристикой не только механических, но и диэлектрических свойств полимера. Это время возрастает с повышением степени полимеризации и уменьшается под влиянием давления и температуры. Последнее особенно важно, когда хотят найти оптимальные условия для формирования различных изделий из полимеров. [c.339]

    Однако это уравнение отражает рассматриваемую зависимость лишь в суммарной форме. Как показали работы последних лет, в действительности эти соотношения являются более сложными. Релаксация в той или другой степени относится ко всем формам перемещения частиц в материале, но скорость релаксации их в данном полимере при одинаковых внешних условиях может различаться в сильной степени. Перемещения электронов практически не задерживаются, перемещения же атомов и атомных групп и изменения их колебательного движения задерживаются в различной степени в зависимости от их массы и характера связи, а также степени связанности их с другими частицами. Это существенно влияет на диэлектрические свойства полимеров. То же относится и к перемещениям или изменениям конформации отдельных звеньев цепей и макромолекулы в целом, причем последние сильно зависят от степени полимеризации и от строения цепей. При повышении степени полимеризации скорость релаксации уменьшается. Еще больше усложняются эти соотношения в полимерах, содержащих структурные единицы, различные по составу и строению, т. е. в сополимерах, привитых полимерах и пр. В общем существует некоторый комплекс времен релаксации, характеризующий различную скорость релаксации разных форм перемещения частиц в данном полимере. Кроме того, из внешних условий на скорость релаксации существенно влияет давление. При повышении давления увеличивается напряжение и соответственно уменьшается время релаксации. Это широко используется на практике при формовании изделий из полимерных материалов. Время релаксации зависит также от присутствия в полимере других веществ. Так, на введении в полимер специальных пластификаторов основан один из методов увеличения скорости релаксационных процессов. [c.582]


    Одним из разделов учения о структуре и свойствах полимеров является исследование процессов молекулярной релаксации, которые непосредственно отражают характер теплового движения в этих системах. В работах Г. П. Михайлова и сотр. [77—81], начатых в 40-е годы, эти процессы исследовались в основном диэлектрическим методом и лишь в последнее время был применен импульсный метод ЯМР, [c.326]

    В настоящее время известно большое число экспериментальных данных по изменению Тс полимера под влиянием поверхности твердого телг(. Эти данные получены различными методами (дилатометрическим, динамическим, по измерению механических свойств, теплоемкости, методами ЯМР, диэлектрической релаксации, радио-термолюминесценции и пр.). Так как каждый из этих методов имеет свои ограничения и позволяет выявить преимущественно какой-либо один тип молекулярных движений, то результаты, полученные различными методами, не всегда сопоставимы между собой. [c.89]

    В случае смеси двух высокомолекулярных соединений поляризация молекул каждого из них будет иметь характеристики, зависящие от пространственного взаиморасположения макромолекул, т. е. от совмещения компонентов. Возможно появление новых процессов диэлектрической релаксации, связанных с межмолекулярным влиянием контактов разнородных молекул. По тому как меняются времена релаксации, энергия активации или интенсивность поляризации того или иного компонента, в ряде случаев можно сделать вполне надежные выводы о морфологии полимерной композиции. Мы получаем информацию, крайне необходимую для решения важнейших проблем физики полимеров, возникающих при переходе к полимерным композициям. Это прежде всего термодинамические и кинетические аспекты формирования структуры сложных систем и прогнозирования физико-механических свойств композиционных материалов. [c.165]

    Если в полимерном образце создать электрическое поле, то дипольные моменты отдельных кинетических элементов или атомных групп будут стремиться ориентироваться в этом поле. Такой процесс ориентации и представляет собой поляризацию полимерного диэлектрика. Если убрать внешнее электрическое поле, то вследствие теплового движения отдельных кинетических элементов через некоторое время поляризация полимерного образца уменьшится до нуля и система вернется в прежнее равновесное (или квазиравновесное) состояние. Такой процесс перехода к равновесию называется диэлектрической релаксацией и характеризуется временем релаксации т . Если к полимерному диэлектрику приложить переменное электрическое напряжение, то очевидно, что диэлектрические свойства полимера будут зависеть от соотношения между частотой приложенного электрического напряжения О) и временем диэлектрической релаксации т,. [c.256]

    Особенности строения макромолекул и многообразие форм молекулярной подвижности в полимерах приводит к набору релаксационных процессов, каждый из которых связан с тепловым движением кинетических единиц определенного вида и может быть описан спектром времен релаксации. Времена релаксации, связанные с подвижностью крупных отрезков макромолекулы, например сегментов, а тем более с подвижностью элементов надмолекулярной структуры, могут быть довольно большими. Соответствующие им релаксационные процессы протекают медленно. Мелкомасштабные движения макромолекул обеспечивают более быстрые релаксационные процессы. В связи с широкой шкалой времен релаксации большая часть физических свойств полимеров имеет релаксационную природу. Так, релаксационный характер носят все механические свойства, а также электрические (диэлектрическая проницаемость, электропроводность), магнитные (магнитная восприимчивость и проницаемость). [c.4]

    Этот раздел в основном посвящен мелко- и среднемасштабным движениям отдельных гибких цепных макромолекул в растворе. Мелкомасштабные движения охватывают одно или несколько звеньев полимерной цепи, а в среднемасштабных движениях участвует большое число звеньев, сравнимое с числом звеньев в статистическом сегменте цепи или даже больше его. В то же время среднемасштабные движения предполагаются малыми по сравнению с размерами полимерной цепи и их свойства еще не зависят от молекулярного веса цепи. Для гибких цепных макромолекул физическая кинетика мелко- и среднемасштабных движений определяет закономерности поглощения ультразвука [1—5], поляризованной люминесценции [6—8], ядерной магнитной релаксации [9—11], диэлектрической релаксации в переменных полях [12—28]. Мы ограничимся кратким изложением и интерпретацией существующих данных по высокочастотной диэлектрической релаксации растворов гибких карбоцепных полимеров. [c.7]


    Изучение релаксации диэлектрической поляризации полимеров в растворе позволяет в широких пределах изменять межмолеку-лярные взаимодействия, приближаясь к свойствам изолированной макромолекулы. Кроме того, тепловое движение макромолекул в растворе в какой-то мере моделирует тепловое движение блочного полимера в вязкотекучем состоянии (рис. 1.12). Времена релаксации и энергии активации дипольной поляризации полимера при очень высоких температурах и в растворе сближаются [115]. [c.42]

    Если снять внешнее электрическое поле, приложенное к полимерному диэлектрику, то вследствие теплового движения через некоторое время поляризация полимерного образца исчезает и он возвращается в прежнее равновесное состояние. Такой процесс перехода системы в равновесное состояние называется диэлектрической релаксацией и характеризуется временем релаксации т. Если к полимерному диэлектрику приложить переменное электрическое поле, то очевидно, что диэлектрические свойства полимера (в том числе и диэлектрическая проницаемость) будут зависеть от соотношения между частотой изменения приложенного внешнего электрического поля ш и временем диэлектрической релаксации т. [c.172]

    Релаксационный характер деформации полимеров оказывает влияние на многие механические, диэлектрические и другие свойства их. Так, при периодически действующей внешней силе деформация полимера в условиях, когда время релаксации значительно, будет в той или другой степени запаздывать по сравнению с действием силы. В результате этого при короткопериодических (высокочастотных) воздействиях полимер проявляет более высокий модуль упругости (точнее — модуль эластичности), а следовательно, и меньшую эластичность, чем при постоянно действующей силе. [c.581]

    Релаксационный характер деформации полимеров оказывает влияние на многие механические, диэлектрические и другие свойства их. Так, при периодически действующей внешней силе деформация полимера в условиях, когда время релаксации значительно, будет в той или другой, Степени запаздывать по сравнению с действием силы. В результате этого при короткопериодических [c.573]

    Полиарилаты, представляющие собой сложные гетероцепные полиэфиры двухатомных фенолов, являются еще сравнительно новым, но чрезвычайно перспективным классом полимеров. Составленные во многих случаях из жестких макромолекул, насыщенных ароматическими ядрами, они имеют высокие температуры размягчения и в этом отношении часто намного превосходят традиционные, широко используемые полимеры. Высокие температуры размягчения полиарилатов позволяют применять их во многих областях техники, где требуется сочетание достаточно высокой прочности, хороших диэлектрических и других свойств при повышенных температурах. При сравнительно низких температурах полиарилаты также часто превосходят другие полимерные материалы, например, по способности работать длительное время в условиях воздействия значительных механических напряжений. Объясняется это тем, что релаксация напряжения в них, хотя и выражена довольно ярко, как вообще у всех полимеров, все же проявляется в меньшей степени в силу специфики строения элементов структуры, образованной жесткими макромолекулами. [c.5]

    Исследование диэлектрических свойств полимеров — один из наиболее эффективных способов установления особенностей их строения. Диэлектрический метод оказывается пригодным как для полярных, так и неполярных полимеров (полиэтилен, полистирол, политетрафторэтилен и т. д.), поскольку полимеров, абсолютно лишенных полярных групп, практически не существует. В соответствии с корреляциями, рассмотренными в гл. I и И, для всех полимеров установлено два типа диэлектрических потерь ди-польно-сегментальные, связанные с подвижностью звеньев или большой совокупности их (кинетических сегментов) в электрическом поле, и дипольно-групповые, обусловленные движением, например, боковых полярных групп. Если в боковой цепи полимера содержатся полярные группы, способные ориентироваться в электрическом поле независимо друг от друга и имеющие разные времена релаксации, то наблюдается сложный пик дипольно-групповых потерь. Сегментальное движение в полимерах при температурах выше температуры стеклования кооперативно, так как подвижности сегментов данной цепи и сегментов соседних макромолекул взаимосвязаны. По этой причине в процесс ориентации вовлекаются области довольно больших размеров, чем и объясняются высокие значения кажущейся энергии активации сегментального движения. Ниже температуры стеклования Тс переход сегмента из одного равновесного положения в другое требует практически беС конечно большого времени, превышающего доступную продолжительность наблюдения. [c.243]

    Уравнения (7.2) и (7.3) получены Дебаем при условии, что все диполи в диэлектрике одинаковы и не взаимодействуют между собой, поэтому имеется одно время релаксации т. Однако в реальных диэлектриках, в частности полимерах, процессам релаксации присуще распределение времен Xi, описываемое релаксационным спектром. Тот факт, что диэлектрические свойства полимеров не могут быть точно описаны уравнением с одним т, был впервые принят во внимание Фуоссом и Кирквудом [7.2], которые прямым образом учли существование спектра времен релаксации для полимеров. Учет распределения времен релаксации в конденсированных системах, в которых отсутствуют дальнодействующие силы, сделан в теории диэлектрических свойств слабополярных систем. Если функция распределершя времен релаксации является симметричной, то для обобщенной диэлектрической проницаемости может быть использовано модифицированное уравнение Дебая вида [c.177]

    Релаксация в той или другой степени относится ко всем формам перемещения частиц в материале, но скорости релаксации разных частиц в данном полимере при одинаковых внешних условиях могут сильно различаться. Скорость перемещения электронов практически не изменяется, перемещения же атомов и атомных групп и изменения их колебательного движения задерживаются в различной степени п зависимости от их массы и характера связи, а также степени связанности их с другими частицами. Это существенно влияет на диэлектрические свойства полимеров. То же относится и к перемещениям или изменениям расположения отдельных звеньев цепей и в особенности макромолекулы в целом. Скорость перемещения макромолекул сильно зависит от степени полимеризации и от строения цепей. При повышении степени полимеризации скорость релаксации уменьшаётся. Ещё больше усложняются эти соотношения в полимерах, содержащих струк- УрШе единицы различные по составу и строению, т. е. в сополимер ахТ привитых полимерах и пр. Для различных форм движения частиц в данном полимере время релаксации может сильно различаться, [c.219]

    Зависимость диэлектрических свойств от строения полимеров. Электрич. проводимость, диэлектрич. потери и диэлектрич. проницаемость (в меньшей степени — электрич. прочность) полимеров зависят от химич. состава и структуры мономерного звена, строения макроцепей, способа их укладки. От молекулярного взаимодействия в полимерах зависят подвижность свободных ионов, времена релаксации и их темп-рные зависимости, эффективные дипольные моменты мономерного звена. [c.371]

    При введении в молекулу полиорганосилоксана полярных групп вследствие увеличения межмолекулярного взаимодействия изменяются физические свойства, а именно растут плотность, вязкость и диэлектрическая проницаемость, повышается также температура кипения и область релаксационных явлений в электрическом поле перемещается в сторону более высоких температур (времена релаксации возрастают). Это сказывается и на повышении механических свойств полимеров, их адгезии, стойкости к действию растворителей. Так, при введении фторорганических или нитрильных групп в каучуки повышается их стойкость к действию растворителей. [c.13]

    Независимость времени диэлектрической релаксации от молекулярной массы и содержания полимера в растворе в. области малых концентраций является, вероятно, общим свойством растворов гибкоцепных полимеров и указывает на локализованность процесса установления дипольной поляризации. Интересно отметить, что при концентрациях полимера в растворе порядка 1—2% нельзя считать макромолекулы изолированными друг от друга, тем не менее при этих концентрациях взаимодействие между макромолекулами (или между частями одной и той же макромолекулы) настолько ослаблено, что существенно не влияет на время релаксации кинетической единицы. [c.166]

    С. X. Факирова и Н. Ф. Бакеева [23]. В расплавах полиэтилена и других полимеров также обнаружены различно ориентированные области, в которых участки цепных молекул расположены параллельно друг другу, образуя ориентационный порядок и ближний порядок в расположении центров [[24]. Берри рентгенографически показал наличие ближнего порядка в концентрированных растворах жесткоцепного ароматического полимера, при этом с увеличением концентрации раствора увеличиваются размеры надмолекулярных структур, [25]. При смешении жидкостей друг с другом структура каждой из них меняется, что доказано методами рентгенографии и ИК-спектроскопии для водно-спиртовых растворов, а также для наиболее упорядоченной жидкости — воды, структура которой может упорядочиваться или разупорядочиваться при введении различных ионов, при этом изменяются трансляционное движение молекул воды и время релаксации ([1]. При растворении полимеров также должна меняться структура обоих компонентов. Под структурой раствора полимера следует понимать взаимное расположение молекул растворителя и полимера, а также конформацию последних [26]. Это проявляется в уменьшении парциальной энтропии растворителя и сжимаемости ориентированных сольватных слоев [27, 28], в знаке двойного лучепреломления [29] в изменении диэлектрических свойств растворов [30]. [c.224]

    Вязкость систем поливинилхлорид — пластификатор при низком содержании пластификатора очень велика. Только при высоком содержании пластификатора и связанным с этим снижением внутренней вязкости системы время релаксации становится настолько мало, что сегменты макромолекул полярного полимера могут ориентироваться в электрическом поле. С повышением температуры вязкость системы уменьшается и для того же времени релаксации, которое устанавливается при данной частоте, требуется меньшее количество пластификатора. Методы определения вну-треннней вязкости системы, основанные на измерении диэлектрических показателей, весьма чувствительны, поскольку диэлектрические свойства очень сильно изменяются при незначительном изменении концентрации пластификатора. При различном содержании пластификатора в пластических массах б достигает максимального значения, зависящего от температуры и частоты. Так как максимальные значения б обусловлены строением пластификаторов, возникает еще одна возможность сравнения действия пластификаторов. Для этой цели было предложено уравнение  [c.147]


Смотреть страницы где упоминается термин Диэлектрические свойства полимеро время диэлектрической релаксации: [c.327]    [c.374]    [c.403]    [c.181]    [c.44]    [c.64]    [c.146]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.2 , c.166 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.2 , c.166 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрические свойства

Диэлектрические свойства полимеро

Релаксация время

время релаксации Сжу время релаксации при



© 2025 chem21.info Реклама на сайте