Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диэлектрики полимерные

    К числу современных пластмасс относятся так называемые армированные пластики. В армированных пластиках в качестве наполнителя используют различные волокна. Волокна в составе пластмассы несут основную механическую нагрузку. Органопластики — пластмассы, в которых связующим являются синтетические смолы, а наполнителем — органические полимерные волокна. Их широко применяют для изготовления деталей и аппаратуры, работающих на растяжение, средств индивидуальной защиты и др. В стеклопластиках армирующим компонентом является стеклянное волокно. Стекловолокно придает стеклопластикам особую прочность. Они в 3—4 раза легче стали, но не уступают ей по прочности, что позволяет с успехом заменять ими как металл, так и дерево. Из стеклопластиков, например, изготовляют трубы, выдерживающие большое гидравлическое давление и не подвергающиеся коррозии. Материал является немагнитным и диэлектриком. В качестве связующих при изготовлении стеклопластиков применяют ненасыщенные полиэфирные и другие смолы. Стеклопластики широко используются в строительстве, судостроении, при изготовлении и ремонте автомобилей и других средств транспорта, быту, при изготовлении спортинвентаря и др. По сравнению со стеклопластиками углепластики (п.ласт-массы на основе углеродных волокон) хорошо проводят электрический ток, в 1,4 раза легче, прочнее и обладают большей упругостью. Они имеют практически нулевой коэффициент линейного расширения по цвету — черные. Они применяются в элементах космической техники, ракетостроении, авиации, наземном транспорте, при изготовлении спортинвентаря и др. [c.650]


    Эффект от замены может быть усилен путем выбора соответствующего полимерного материала. Согласно теории регулярных растворов /11/, адгезия между диэлектриками будет тем слабее, чем больще разница между плотностями энергии когезии молекул соприкасающихся тел. Так как энергия когезии в кристаллах парафина обуславливается слабыми дисперсионными силами, то следует ожидать, что увеличение интенсивности межмолекулярных сил в материале защитного покрытия приведет к увеличению указанной разности и снижению сил прилипания между поверхностью под- [c.143]

    Для полимерных электролитов проводимость полностью определяется ионизацией макромолекул. В пользу ионного характера проводимости полимеров свидетельствует распределение потенциала по толщине образца. Так, измерения такого распределения в образцах резины из СКН-26 показывают, что по форме оно совпадает с теоретическим, рассчитанным для материалов с ионной проводимостью, и наблюдаемым для низкомолекулярных диэлектриков, ионная природа проводимости которых доказана прямыми экспериментами. [c.72]

    Большой вклад в развитие этих методов применительно к полимерным диэлектрикам внесен школой Г. П. Михайлова. [c.231]

    Многие виды диэлектриков, особенно пластмассы, в большей или меньшей степени гидрофобны, т. е. не смачиваются водой. Поэтому гидрофилизация поверхности большинства диэлектриков является основной задачей, решаемой на стадии первичной обработки поверхности. Наиболее эффективными способами придания поверхности диэлектрика гидрофильных свойств считаются травление в органических растворителях и обработка в растворе окислителей. Органический растворитель разрыхляет поверхностный слой диэлектрика, вызывая его набухание, что ослабляет связи между полимерными цепями в приповерхностном слое. Окислительная обработка, проводимая после стадии набухания, резко повышает сорбционную способность поверхности диэлектрика. Это происходит главным образом за счет увеличения хемосорбционной поверхностной активности, которая обусловлена, с одной стороны, увеличением гидрофильности поверхности ( прививка активных групп), с другой стороны, разрывом связей типа С=С и С=-0 в результате воздействия на молекулы мономеров сильного окислителя. Так, обработка стеклотекстолита в растворе, содержащем перманганат калия и фосфорную кислоту, приводит к повышению адсорбции палладия на его поверхности в четыре раза, а обработка в растворе, содержащем хромовый ангидрид и серную кислоту, увеличивает сорбционную способность поверхности стеклотекстолита более чем в 10 раз. [c.97]


    Как хорошо известно, если к идеальному конденсатору приложить переменное напряжение U, то вектор тока I опережает напряжение на 90°. При этом потерь энергии не происходит. В случае неидеального диэлектрика, например, полимерного материала, часть энергии w рассеивается в виде тепла. Угол ф между векторами тока и напряжения теперь уже не равен 90° (рис. УП.1). Мерой диэлектрических потерь может служить тангенс угла б, дополняющего угол ф до 90° [c.232]

    Термодеполяризация полимерных электретов обычно приводит к появлению двух максимумов тока смещения, один из которых связан с процессом разрушения остаточной поляризации, а другой характеризует процесс рассасывания свободного заряда через объем диэлектрика. [c.254]

    С другой стороны, эти явления играют определяющую роль при выборе полимерных материалов для использования их в качестве диэлектриков в разных областях техники, и поэтому упоминание о них в главе об электрических свойствах представлялось необходимым. [c.266]

    ОБЩИЕ СВОЙСТВА И МЕТОДЫ ПОЛУЧЕНИЯ ПОЛИМЕРНЫХ ДИЭЛЕКТРИКОВ [c.5]

    Диэлектрики имеют удельное электрическое сопротивление в пределах от 10 до 10 Ом-м. Вид химической связи в них, в основном, ионный или ковалентный. Свободные носители заряда отсутствуют. Между валентной зоной и зоной проводимости находится широкая запрещенная зона. Наиболее распространенными диэлектриками являются полимерные материалы органической и неорганической природы соли, оксиды, стекло, полиэтилен, резина, многие текстильные материалы и др. [c.634]

    В электротехнике широко используют некоторые полимерные материалы, диэлектрические свойства которых невысокие, но они сочетаются с рядом ценных физических, химических и технологических свойств. Таким материалом является, например, поливинилхлорид. Вследствие несимметричного строения макромолекул и сильной их полярности поливинилхлорид худший диэлектрик, чем полиэтилен и полистирол. Однако такие его ценные свойства, как инертность по отношению к кислотам и щелочам, водостойкость, газонепроницаемость, невоспламеняемость и т. п., способствуют исключительно широкому применению поливинилхлорида для изоляции защитных оболочек кабельных изделий, проводов, для изготовления трубок, листов, лент и т. п. При дополнительном хлорировании поливинилхлорида получают перхлорвиниловый полимер, содержащий 64—65% хлора. Из него производят волокно хлорин, ткани, ленты, лаки, эмали, предохраняющие электроаппаратуру от коррозии. [c.339]

    Работа 47. Определение электрической прочности полимерных диэлектриков при переменном и постоянном напряжении,  [c.4]

    Электрическое старение (электрохимическая форма пробоя) также является разновидностью пробоя. Электрическое старение обусловлено медленными изменениями химического состава и структуры полимерного диэлектрика, происходящими под действием электрического поля или разрядов в окружающей среде. Электрическое старение развивается при гораздо более низких значениях напряжения, чем пробивное напряжение при тепловом и электрическом пробое. [c.137]

    Электрическая прочность полимерного диэлектрика зависит от чистоты полимера, частоты и формы кривой приложенного напряжения, длительности импульса, температуры, формы и матери- [c.137]

    Если снять внешнее электрическое поле, приложенное к полимерному диэлектрику, то вследствие теплового движения через некоторое время поляризация полимерного образца исчезнет и он вернется в прежнее равновесное состояние. [c.138]

    Такой процесс перехода к равновесию называется диэлектрической релаксацией и характеризуется временем релаксации т. Если к полимерному диэлектрику приложить переменное электрическое поле, то очевидно, что диэлектрические свойства полимера (в том числе и диэлектрическая проницаемость) будут зависеть от соотношения между частотой изменения приложенного электрического поля (О и временем диэлектрической релаксации т. [c.138]

    Диэлектрические потери полимерных диэлектриков зависят от степени увлажнения и наличия примесей и воздушных пузырьков в полимере. Электроизоляционный материал тем лучше, чем меньше значение тангенса угла потерь, т. е. ниже диэлектрические потери. [c.139]

    Цель работы. Ознакомление с методикой измерения электрической прочности диэлектриков и определение электрической прочности полимерного образца. [c.139]

    Цель работы. Ознакомление с методикой измерения электрических сопротивлений диэлектриков и опреде-чение удельного объемного и поверхностного электрического сопротивлений полимерного образца. [c.143]

    Работа 49. Определение диэлектрической проницаемости и тангенса угла диэлектрических потерь полимерных диэлектриков [c.146]

    I. СТРОЕНИЕ И ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ПОЛИМЕРНЫХ ДИЭЛЕКТРИКОВ [c.5]

    Современное развитие электротехники характеризуется применением разнообразных по свойствам диэлектриков, называемых в технике электроизоляционными материалами. Среди органических диэлектриков большое место занимают материалы на основе полимерных соединений. [c.5]


    Этим можно объяснить хорошие электроизоляционные свойства жидких диэлектриков, состоящих из углеводородов различного строения (трансформаторного и других нефтяных масел) и полимерных углеводородов (разветвленного полиэтилена, полипропилена, полибутиленов и др.). [c.56]

    В последние годы появились новые разделы науки об электрических свойствах полимеров. К существенным достижениям химии и технологии полимеров относится разработка (в дополнение к полимерным диэлектрикам) полимерных полупроводников и электропроводящих материалов, изучению и применению которых посвящены работы В. Е. Гуля, Н. С. Ениколопова и других исследователей. Открыты уникальные пьезоэлектрические свойства поливинилиденфторнда, активно исследуются полимерные электреты (А. Н. Губкин, Г. А. Лущейкин), а также пироэлектрики. Все это расширяет область применения полимерных материалов в технике. [c.8]

    Нитриды BN, A1N и SI3N4, GeaN — твердые полимерные вещест-иа с высокими температурами плавления (2000—3000°С) они либо диэлектрики, либо полупроводники. [c.346]

    В физике твердого тела для различных классов кристаллов наблюдаются сверхсостояния (сверхпроводимость, ферромагнетизм и сверхпластичность для металлов, сегнетоэлектрическое состояние для диэлектриков), для квантовой жидкости (гелия) наблюдается сверхтекучесть. Полимеры обладают своим сверхсостоянием, которое называется высокоэластнческим состоянием. Высокоэластическое состояние объясняется не только структурой полимерных молекул или макромолекул, но и свойством внутреннего вращения, известным для простых молекул в молекулярной физике. Теория высокой эластичности основывается на применении конформ анионной статистики макромолекул, которая является развитием статистической физики в физике полимеров. Аморфные полимеры по структуре сложнее, чем низкомолекулярные вещества, но в их ближнем порядке примыкают к строению жидкостей. Релаксационные и тепловые свойства расплавов полимеров и жидкостей во многом аналогичны (процесс стеклования, реология). Кристаллические полимеры по своему строению похожи на твердые тела, но сложнее в том отношении, что наряду с кристаллической фазой имеют в объеме и аморфную фазу с межфазными слоями. По электрическим свойствам полимеры — диэлектрики и для них характерно электретное состояние, по магнитным свойствам полимеры — диамагнетики, а по оптическим свойствам они характеризуются ярко выраженным двойным лучепреломлением при молекулярной ориентации. При этом все полимеры обладают уникальными механиче- [c.9]

    Электрическая прочность. Как и во всех диэлектриках, при достижении некоторой напряженности электрического поля в полимерах возникает пробой, т. е. происходит электрический разряд через материал. Природа его мало отличается от природы пробоя в других диэлектриках он сопровождается образованием разветвленных каналов, по которым идет разряд. Пробою в полимерных диэлектриках предшествует микроориентация материала, связанная с его "сильной" поляризацией. Полярные полимеры имеют большую электрическую прочность, чем неполярные. Электрическая прочность резко уменьшается при переходе из застеклованного в высокоэластическое состояние. Введение наполнителя также резко уменьшает электрическую прочность. Знание величины электрической прочности в зависимости от толщины, формы и других параметров образца — обязательное условие успешного применения резин в качестве электро- [c.73]

    Нитриды BN, A1N и SijNi, Ge,N4 — твердые полимерные вещества с высокими температурами плавления (2000—30(Ю°С). Нитриды этого типа либо диэлектрики, ли о п<мупров<здники. О их кислотных свой- [c.390]

    Не все технически важные свойства полимеров удоб.ны для проведения структурных исследований методами релаксационной спек-трометрии (см. стр. 231). Электропроводность и электрическая прочность относятся именно к этой категории свойств. Более того, хотя эти характеристики и взаимосвязаны, электропроводность вообще нежелательна при использовании полимерных диэлектриков, а при исследовании их методами, описанными в 1 и 2, электропроводность — своего рода помеха, поскольку ограничивает в области высоких температур применимость принципа ТВЭ. Известны случаи, когда в этой области путали диэлектрические потери с диссипацией энергии за счет наличия электропроводности. [c.261]

    Однако методом ЯКР можно весьма просто измерять внутренние напряжения в полимерных диэлектриках. Внутренние напряжения в кристаллах, искажая кристаллическую решетку, меняют градиент внутреннего электрического поля. Следовательно, меняется и резонансная частота. Если измерить зависимость резонансной частоты в кристаллическом порошке, содержащем ядра, обладающие квадрупольньш моментом, от давления, а затем ввести его в полимер, то окажется возможным измерять внутренние напряжения в полимерах. Этот метод был использован, например, для изучения процесса отверждения эпоксидной смолы. После отверждения ее при 80 °С в течение 1,5 ч в смоле появляются внутренние давления, равные (160 30) 10 Па, а после ч давление доходит до (190 30) 10 Па. [c.278]

    Различают изотропные (к которым могут быть отнесены многие неполярные и полярные полимеры) и анизотропные (к ним относятся некоторые многокомпонентные гетерогенные смеси твердых вещее, о, а также многослойные конструкционные системы) диэлектрики. Смещение положительных зарядов в изотропных полимерных диэлектриках происходит в направлении электрического поля. При этом оказывается справедливым соотношение Р = кагоЕ, где / а —скалярная величина, называемая абсолютной диэлектрической восприимчивостью] Е —вектор напряженности электрического поля ео = 8,85-10- 2 Ф ш электрическая постоянная. Вектор Р на- [c.173]

    Для реальных полимерных материалов, применяющихся в качестве диэлектриков для электро- и радиоизоляции, электрическая проводимость зависит от их состава, а также от молекулярного строения и надмолекулярной структуры полимеров. Существенное влияние на а полимерных диэлектриков оказывают также температура, электрические поля и воздействие ионизирующей радиации. [c.200]

    С повышением размеров сферолитов уменьшается плотность их упаковки и Стост уменьшается. Некоторое возрастание ст при дальнейшем повышении диаметра сферолитов связано с изменением дефектности структуры ПП. Если при ориентации аморфных полимеров имеет место увеличение их ст, то при вытяжке кристаллических полимеров из-за переориентации и частичного разрушения ламелей. и фибрилл возникает анизотропия укладки структурных элементов и изменение ст (иногда на 2—3 порядка). При использовании полимерных материалов в качестве диэлектриков стремятся к максимальному уменьшению их ст. Для достижения этого полимеры должны содержать минимальное количество ионогенных примесей, их е должна быть по возможности минимальной, сшивание макромолекул должно приводить к повышению Тс и, наконец, они должны иметь (после кристаллизации или ориентации) оптимальную надмолекулярную структуру, которой бы соответствовала наименьшая для полимера данного химического состава и молекулярного строения о. [c.204]

    Удельное поверхностное электрическое сопротивление (рз) — сопротивление между противоположными сторонами поверхности квадрата площадью 1 м току, проходящему по поверхности через две противоположные стороны этого квадрата оно измеряется в Ом (или кратные единицы ТОм, ГОм и др.). Величина р зависит от состояния поверхности диэлектрика, наличия на ней примесей. Полимеры могут адсорбировать на своей поверхности влагу, поскольку полярные группы, входящие в макромолекулу, имеют гид-)офильный характер и способны притягивать молекулы воды. Чолимеры, содержащие способные к ионизации минеральные наполнители, также адсорбируют воду. На поглощение влаги и образование поверхностных слоев влияет температура, поэтому поверхностное сопротивление сильно зависит от температуры. При повышенных температурах в сухой атмосфере и в отсутствие случайных поверхностных загрязнений значение рв полимерного диэлектрика намного превышает значение р . [c.136]


Библиография для Диэлектрики полимерные: [c.385]   
Смотреть страницы где упоминается термин Диэлектрики полимерные: [c.392]    [c.201]    [c.99]    [c.339]    [c.143]   
Высокомолекулярные соединения (1981) -- [ c.563 ]

Высокомолекулярные соединения Издание 2 (1971) -- [ c.429 ]

Высокомолекулярные соединения Издание 3 (1981) -- [ c.563 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрики



© 2025 chem21.info Реклама на сайте