Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Размягчение полимеров

    Подобно металлам, термопласты могут разрушаться при действии циклических напряжений меньших, чем предел прочности при статических испытаниях. Это явление называют динамической усталостью. Оно встречается при эксплуатации вращающихся и вибрирующих полиамидных деталей, таких как пропеллеры и шестерни, подвергаемые продолжительному воздействию циклических напряжений. Число циклов, необходимых для разрушения детали, зависит не только от напряжения, но и от температуры, содержания влаги, степени кристалличности материала и частоты действия напряжения. При высоких частотах нагружения (обычно более 300 циклов в минуту) энергия деформации практически полностью переходит в тепло, в особенности при температурах, при которых для данного материала характерно высокое поглощение. Этот эффект ускоряет разрушение изделия вследствие теплового размягчения полимера. Раз- [c.117]


    Исследование диэлектрических свойств полимеров в широких температурно-частотных диапазонах является одним из наиболее эффективных способов установления особенностей их строения. Однако отклик полимерной системы на воздействие электрического поля определенной частоты отнюдь не эквивалентен механическому отклику . Поэтому, хотя метод диэлектрических потерь может быть применен для выявления области стеклования или размягчения полимеров, температура максимума диэлектрических потерь может достаточно существенно отличаться от температуры структурного стеклования, так же как частота (при заданной температуре соответствующая максимуму) может отличаться от частоты механического стеклования. Именно несовпадение релаксационных переходов, отвечающих электрическим или механическим воздействиям, по температурной или частотной шкале дает дополнительную информацию об уровнях структурной организации полимеров. [c.183]

    Поликонденсацию в расплаве ведут без растворителей, нагревая мономеры при температуре на 10—20°С выше температуры плавления (размягчения) полимеров (обычно 200—400 °С). Процесс начинается в среде инертного газа и заканчивается в вакууме. [c.356]

    Температура размягчения полимеров - температура, при которой в процессе нагревания резко возрастает деформируемость образца под влиянием заданной нагрузки. [c.406]

    Полимер имеет ярко-красную окраску, прозрачен, аморфен, растворим в органических растворителях. Высокая хрупкость и низкая температура размягчения полимера затрудняют его применение [c.430]

    Предварительная откачка также существенно уменьшает дозу облучения, при которой на кривой высвечивания появляется максимум, связанный с размягчением полимера. Появление вспышки свечения в момент размягчения полимера указывает на то, что весь растворенный в образце кислород израсходован и в этом интервале температур возможна рекомбинация первичных радикалов. [c.239]

Рис. 13.3. Зависимость силы трения от температуры в области размягчения полимеров при разных скоростях скольжения (01>Ц2) Рис. 13.3. Зависимость <a href="/info/328679">силы трения</a> от температуры в <a href="/info/1265408">области размягчения</a> полимеров при разных скоростях скольжения (01>Ц2)
    Если обработка полиуретанов формальдегидом проводится в присутствии кислот, реакция идет преимущественно в направлении образования межмолекулярных метиленовых связей, что при невысокой степени замещения приводит к повышению температуры размягчения полимера. [c.262]


    Температура очищенной воды не должна превышать 50 °С (во избежание размягчения полимера). [c.218]

    Примечание. Для полимеров таблиц 3.1-3.4 выход составлял 94-98% приведенная вязкость найдена для 0.5%-х растворов полимеров в смеси трифторуксусная кислота метиленхлорид = 1 4 (по объему) при 25 °С Приведено по данным термомеханических испытаний при нагрузке на образец 0.8 кгс/см . За температуру размягчения полимера принимали точку пересечения касательных к ветвям термомеханической кривой в области течения полимера.  [c.178]

    Реакцию между эпихлоргидрином и двуатомным фенолом проводят также в ш,елочной среде при 100". Молекулярный вес получаемых полимеров составляет 1000—4500. В табл. 21 приведена зависимость молекулярного веса полиэпоксида, количества глицидных групп на концах его макромолекул и температуры размягчения полимера от соотношения эпихлоргидрина и дифенилолпро-пана в исходной смеси мономеров. [c.410]

    Понятие термостойкости полимерных материалов довольно неоднозначно. С одной стороны, оно характеризует температурный интервал плавления или температуру размягчения полимера с другой стороны, под термостойкостью понимают верхнюю предельную температуру, при которой в определенных условиях и при заданном вре- [c.390]

    Выше температуры плавления или размягчения полимера такие составные частицы проявляют реологические свойства почти чистых расплавов полимеров, что неизмеримо облегчает и упрощает технологию и снижает энергетические (а значит и экономические) затраты, поскольку теперь удается получать напоминающие бетон строительные или конструкционные материалы теми же способами, что изделия из термопластов, т. е. литьем, прессованием и т. п. [c.11]

    Охарактеризовать высокомолекулярные вещества значительно труднее. Так, у полимеров нет температуры кипения точка плавления кристаллических полимеров в большинстве случаев выражена не резко, причем нередко наблюдается не плавление, а только размягчение полимера, а иногда и его разложение. Поэтому наряду с данными анализа необходимы дополнительные характеристики, такие, как растворимость, вязкость растворов, средняя молекулярная масса, молекулярно-массовое распределение, степень кристалличности. [c.67]

    Реакция протекает в широком интервале температур от —30 до +30°С [39], от 65 до 90 °С [35, 40] или от 90 до 140°С [35, 36]. Процесс можно осуществлять в две стадии первую — при температуре ниже температуры размягчения полимера (до 110°С), вторую — при более высокой температуре (110°С—140°С) [39]. Температура не оказывает существенного влияния на скорость [3] как фотохимически инициируемой, так и радиационно инициируемой реакции. В зависимости от продолжительности процесса в готовом продукте может содержаться от 4 до 65% хлора [2, 3, 25, 32, 35], что обусловлено, по-видимому, диффузионным характером процесса [37]. [c.10]

    Коагулировавший полимер отделяли фильтрованием, промывали и сушили при 60° С. Сухой полимер весил 224 г и содержал 21,1% хлора. Это соответствует отношению стирола к 1,1-дихлор-2,2-дифторэтилену как 2 1. Точка размягчения полимера на аппарате Денниса была 118°. [c.341]

    После введения рукава в трубу один конец его отбортовы-вается на фланец (рис. 5.7, а). Для прижатия рукава к стейкам трубы используется резиновая груша, которая с помощью троса проталкивается вдоль всей трубы (рис. 5.7, б). Для ускорения процесса полимеризации клея труба подогревается снаружи. После отверждения клея отбортовывается второй конец рукава. Применение находит также способ пневматического футерования, сущность которого заключается в том, что пластмассовая труба, введенная в стальную трубу и разогретая до высокоэластичного состояния, оирессовывается сжатым воздухом под давлением 0,5 — 1 МПа, выдерживается для склеивания с металлической трубой под этим давлением, а затем охлаждается воздухом под давлением. Вместо сжатого воздуха может использоваться горячая вода, масло, глицерин, температура нагрева которых должна быть равна температуре размягчения полимера. [c.184]

    Изделие помещается в аппарат для напыления, состоящий нз открытого сосуда, имеющего два дна нижнее — сплошное и верхнее — из керамики или из какого-либо другого пористого материала. На пористое дно насыпается слой тонконзмельчсн-ного су.чого порошка туда же подается сжатый воздух или азот под даилением 0,5—0,6 Мн1лё прн этом объем порошка увеличивается больше чем в 2 раза. Затем металлическая поверхность нагревается выше температуры размягчения полимера. Этот метод непригоден для покрытия изделий со стенками толщиной менее 1 мм. [c.423]

    С возрастанием размера спиртового радикала в полимерных сложных эфирах указанных кислот и одноатомных спиртов снижается температура размягчения полимера, т. е. температура, при которой полимер становится гибким. При одинаковом размере спиртового радикала полимеры эфиров акриловой кислоты отличаются более низкими температурами размягчения по сравнению с полимерными эфирами метакриловой кислоты  [c.342]

    При взаимодействии дн-Аг-карбоксифенилалкил-(арил)-фосфинокси-да с диаминами образуются полимерные амиды, температура размягчения которых выше, чем для полиэфиров соответствующего строения. Так, температура размягчения полимера [c.468]

    В загрузочной воронке мы начинаем медленное и в некоторой степени неустойчивое движение вниз, которое сопровождается многократно повторяющимися столкновениями с соседними гранулами и кратковременными зависаниями в своде. Это продолжается до тех пор, пока мы не достигнем зоны сужения — горловины питающего отверстия. Здесь винтовой гребень подхватывает гранулы и толкает их вперед. Он мгновенно догоняет нашу гранулу, и она начинает вращаться (при этом изменяется ее система координат). Теперь мы регистрируем свое движение относительно червяка, и поэтому кажется, что цилиндр вращается в противоположном направлении. Мы находимся в мелком канале, ограниченном гребнями червяка, его сердечником и поверхностью цилиндра, и начинаем медленное движение по каналу, сохраняя свое местоположение относительно ограничивающих канал стенок. По мере передвижения соседние гранулы нажимают на нашу гранулу со все возрастающим усилием, причем пространство между гранулами постепенно уменьшается. Большинство гранул испытывает такое же воздействие, за исключением тех, которые контактируют с цилиндром и червяком. Движущаяся поверхность цилиндра оказывает интенсивное тормозящее воздействие, в то время как трение о поверхность червяка приводит к возникновению силы трения, направленной вдоль винтового канала. Из разд. 8.13 известно, что это торможение о поверхность цилиндра является движущей силой, вызывающей перемещение частиц твердого полимера в канале червяка. Оба эти фрикционных процесса приводят к выделению тепла, возрастанию температуры полимера, и в особенности слоя, расположенного у поверхности цилиндра. В каком-то сечении температура слоя может превысить температуру плавления или размягчения полимера, и фрикционное торможение переходит в вязкое трение, т. е. твердый полимер перемещается по каналу червяка за счет напряжений сдвига, генерируемых в пленке расплава. Однако в более общем случае еще до начала сколько-нибудь значительного фрикционного разогрева экстремальные условия достигаются на тех участках, где цилиндр разогрет до температуры, превышающей температуру плавления, что ускоряет появление пленки расплава. Это означает окончание той части процесса транспортировки гранул, которая происходит в зоне питания, когда в экструдере присутствует только твердый нерасплавленный материал. К этому моменту наша гранула оказывается до некоторой степени деформированной соседними гранулами, с которыми она тесно контактирует, образуя вместе с ними достаточно прочный, хотя и деформируемый твердый блок, движущийся подобно пробке по каналу червяка. Тонкая пленка, отделяющая слой нерасплавлениого полимера от цилиндра, подвергается интенсивной деформации сдвига. Разогрев твердой пробки происходит как за счет тепла, генерируе- [c.431]


    Связь между ио и температурой механического стеклования (или совпадающей с ней температурой механического размягчения) полимеров не является простой (см. рис. 2.8). Различие в структуре полимеров сказывается на этой величине. Так, для неполярных каучуков /о близко к [/о, а для сильно полярных различие между этими величинами становится заметным. Отношение 52/5] зависит от типа полимера и уменьшается с возрастанием полярности каучу- [c.48]

    Высокомолекулярные полимеры с гибкими цепями характеризуются низкими температурами стеклования и высокими температурами текучести, т. е. широким температурным интервалом высокоэластичности (от —70 °С до +200 °С). Высокомолекулярные полимеры с более жесткими цепями имеют высокие температуры стеклования и небольшой интервал эластичности (от 100 до 160 °С). Полимеры, обладающие еще меньшей гибкостью цепи, имеют очень высокие значения 7 с, и разность Тт—7 с у них настолько мала, что практически они не проявля ют высокоэластических свойств даже при повышенных температурах. В этом случае часто говорят о размягчении полимера, т. е. о его переходе из стеклообразного состояния непосредственно в вязкотекучее. [c.105]

    Зависимости типа приведенных на рис. 9.15 можно объединить и построить, например график зависимости амплитуды деформации от температуры при разных частотах или от частоты при разных температурах. Такие графики, на которых отображается зависимость свойств и от температуры, и от частоты, приведены па рис. 9.16. Рассмотрим изменение амплитуды деформации от температуры при разных частотах. С повышением температуры образец при достижении Тс начинает размягчаться и амплитуда деформации при заданной частоте <0 возрастает. При дальнейшем росте температуры наблюдается переход в область развитого высокоэластического состояния и амплитуда деформации практически не меняется, как мы уже наблюдали при снятии термомеханической кривой в условиях статического нагружения (см. гл. 7). Для полимеров особенно характерна относительность понятия размягчение полимера. В самом деле, при частоте действия силы полимер размягчается при температуре Тс. Если увеличить частоту действия силы, то при температуре Тс полимер не успевает реагировать на эту возросшунэ частоту флуктуационная сетка не успевает перегруппироваться и деформация оказывается незначительной. Потребуется нагревание до более высокой температуры, чтобы обеспечить большую подвижность сегментов макромолекул. При этой более высокой температуре флуктуационная сетка сможет перестраиваться при большей частоте действия силы и развивать значительные деформации. Рост частоты действия силы приводит к росту температуры, при которой в полимере начинают развиваться большие деформации, т. е. к росту температуры стеклования. [c.135]

    Определяем температуру размягчения полимера по методу скольцо и шар . [c.183]

    Асбополимерную диафрагму сначала сушат как обычную асбестовую, а затем при температуре 300—400 °С с тем, чтобы обеспечить размягчение полимера в диафрагме и скрепление им волокон асбеста. [c.80]

    Полимеры, обладающие еще меньшей гибкостью цепи, имеют Очень высокие значения Тс, и разность 7т — Тс у них настолько ма.та. Что практически они не проявляют вьгсокоэластических свойств даже при повышенных температурах. В этом случае часто гопорят о размягчении полимера, т- е. о переходе его из стекдо-< бразного непосредственно в вязкотекучее состояние. [c.199]

    В этом методе точка размягчения полимера соответствует температуре, при которой образец, находящийся на горизонтальном кольце, продавливается на 25 мм под давлением стального шарика, находящегося на образце [5] при определении образец нагревается на водяной бане. Этот метод применим для смол типа феиолформ-альдегидных и мочевпноформальдегидных. Условия этого испытания должны быть постоянными от определения К определению и должны тщательно контролироваться, чтобы получать приемлемо воспроизводимые результаты. [c.68]

    Проявляют СЭИ порошком из заряж. частиц пигмента и носителя или суспензией пигмента в электроизолирующей жидкости. Для проявления фототермоиластич. записи материал нагревают до т-ры размягчения полимера, к-рый де-формирует-ся под влиянием электрич. поля, индуцированного СЭИ. [c.704]

    Размягчение полимера, или эффект Патрикеева—Маллин-за, заключается в снижении напряження при повторных деформациях (рнс 5 12). Это обусловлено неполным восстановлени- [c.292]

    Температура плавления. Температура ллавления полимера, измеревная на горячей металлической поверхности, равна 195°. Полимер размягчается при 120°. При температуре размягчения полимер становится пластичным без. прилипания к металлической поверхности [c.70]

    В отличие от V, соединение VI полимеризуется в присутствии радикальных инициаторов, таких как пероксид бензоила (ПБ) или ДАК. Процесс проводили в растворе в ДМФА в присутствии инициатора - 3,7 х 10 моль/л ПБ. Полимеризация протекает с заметным ускорением после достижения 30%-ной конверсии мономера ("гель-эффект"), что свидетельствует о радикальном характере реакции. Полученный полимер высаживали в ацетон и несколько раз переосаждали. Высушенный полиметилиденфталид имеет высокую температуру стеклования (305°С), причем размягчение полимера сопровождается его разложением (наблюдается суш,ественная потеря массы). [c.13]

    Такие л<-карборансодержащие полинафтоиленбензимидазолы аморфны, растворимы в смсси ТХЭ-фенол, лс-крезоле, N-МП, серной кислоте, обладают пленкообразующими свойствами. Температуру размягчения полимеров определить не удалось, так как выше 280 °С в полимере, как полагают авторы работ [95, 96], происходят превращения, связанные с образованием термостойких связей бор-кислород, бор-бор,бор-углерод. [c.261]

    Модуль ТМА-92, разработанный французской фирмой 8е1агат , применяемый для контроля волокон под натяжением, температуры размягчения полимеров и температуры стеклования композитов, измеряет изменение размеров до 0,01 мкм в интервале темпера- [c.373]

    Выше температуры размягчения упругость полимеров не идеальна, так как упругое восстановление после деформации образца не является полным ( остаточная деформация ). Это происходит потому, что внутренние напряжения внутри образца, вызванные деформацией сегментов, при взаимном перемещении макромолекул могут быть компенсированы, что, в свою очередь, вызывает уменьшение восстанавливающей силы. Такого рода процессы называются релаксационными. При более высоких температурах процессы релаксации протекают быстрее (усиление мак-роброуновского движения), хотя сам полимер в расплавленном состоянии еще остается упругим, так как макромолекулы находятся в виде переплетенных клубков. Поэтому расплавы высокомолекулярных веществ называют также вязкоупругими жидкостями. Вязкоупругие свойства отчетливо обнаруживаются только в определенном температурном интервале в непосредственной близости от температуры размягчения полимеры являются настолько жесткими, что для их деформирования требуются значительные усилия и восстановление протекает весьма медленно. Значительно выше температуры размягчения расплав легко деформируется, но на упругое восстановление накладывается течение вследствие усиления макроброуновского движения. Область [c.37]

    В круглодонную колбу емкостью 50 мл помещают 9,7 г (0,05 моля) диметилтерефталата, 7,1 г (0,115 моля) и этиленгликоля, 0,015 г чистого безводного ацетата кальция и 0,04 г трехокиси серы. Колбу соединяют с дефлегматором, воздушным холодильником, пауком и приемником. Систему откачивают и заполняют азотом, а содержимое расплавляют на масляной или металлической бане при 170 °С. Через длинный капилляр, опущенный практически до дна колбы, пропускают ток азота. Переэтерификация происходит моментально. Метанол отгоняют и собирают в приемник для определения степени конверсии. Как только прекращается выделение спирта (через 1 ч), температуру повышают до 220 °С и поддерживают ее в течение 2 ч для того, чтобы отогнать остатки метанола. Избыток этиленгликоля удаляют, повысив температуру до 220 °С на 15 мин, а затем до 280 °С. Еще через 15 мин приемник заменяют круглодонной колбой и систему откачивают до 0,5 мм рт. ст., поддерживая постоянную температуру на уровне 280 °С. Через 3 ч реакция поликонденсации заканчивается. Пропуская ток азота в систему, колбу охлаждают, а затем осторожно разбивают молотком и извлекают твердый полиэтиленгликольтерефталат. Полиэфир растворим в ж-крезоле и может быть переосажден эфиром или метанолом. Определите вязкость полимера в. w-крезоле или в смеси фенола с тетрахлорэтаном (1 1) (см. раздел 2.3.2.1) и температурный интервал размягчения полимера. Волокна, полученные из расплава, можно растягивать руками. Для синтеза полиэфира можно использовать прибор, описанный п опыте 4-08. [c.198]

    С увеличением содержания хлора от 60 до 72,4% плотность ХПВХ линейно возрастает и может быть использована для определения степени хлорирования ПВХ [26]. На рис. 5.1 показано влияние содержания хлора на температуру размягчения по Вика [27]. Видно, что при увеличении содержания хлора до 69% вследствие увеличения жесткости полимерных цепей температура размягчения полимера возрастает на 55 °С. Температура размягчения зависит от способа получения ХПВХ [28]. При содержании хлора в полимере выше 60% наблюдается заметное различие в температурах размягчения различных хлорпроизводных ПВХ, полученных хлорированием в растворе и в суспензии (рис. 5.2). При одинаковом содержании хлора образцы, полученные путем гетерогенного хлорирования ПВХ с набуханием, характеризуются более высокой температурой размягчения и теплостойкостью, чем образцы, хлорированные без набухания [29]. Различие в свойствах продуктов хлорирования ПВХ, полученных различными методами, по-видимому, объясняется различным распределением атомов хлора в макромолекуле. В среднем теплостойкость ХПВХ выше теплостойкости обычного ПВХ на 20—40 °С [30, 31]. [c.217]

    Полимеры, обладающие еще меньшей гибкостью цепи, име10т Очень высокие значения Тг, и разность — Тс у нцх настолько ма.1а. Что практически они не проявляют высокоэластических свойств даже при повышенных температурах. В этом слу 1ае часто гопорят о размягчении полимера, т- о переходе его из стеклообразного пепосредствс-нно в вязкотекучее состояние. [c.199]


Смотреть страницы где упоминается термин Размягчение полимеров: [c.106]    [c.456]    [c.256]    [c.25]    [c.258]    [c.376]    [c.7]    [c.8]    [c.162]   
Физикохимия полимеров (1968) -- [ c.199 ]

Физикохимия полимеров (1968) -- [ c.199 ]

Физико-химия полимеров 1963 (1963) -- [ c.191 ]

Термомеханический анализ полимеров (1979) -- [ c.79 , c.80 ]




ПОИСК







© 2025 chem21.info Реклама на сайте