Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Воздух теплопроводности коэффициент

    ЧТО зависит от резко различающихся значений этих коэффициентов для веществ углей, воздуха и воды. Так, удельная теплоемкость воды в три раза, а коэффициент теплопроводности в 25 раз больше, чем воздуха, поэтому коэффициенты тепло- и температуропроводности возрастают с увеличением влаги в углях (рис. 13). [c.65]

    Если в качестве газа-носителя использовать азот или воздух, теплопроводность которых гораздо ближе к теплопроводности анализируемых веществ, чем теплопроводность водорода или гелия, то при количественном определении низкокипящих углеводородов сталкиваются с дополнительными затруднениями, обусловленными зависимостью поправочных коэффициентов от температуры. При этом может измениться не только величина, но и знак" сигнала детектора (это, в частности, наблюдается для углеводородов С2). Кроме того, коэффициент чувствительности зависит от концентрации вещества. [c.253]


    Если в качестве газа-носителя использовать азот или воздух, теплопроводность которых гораздо ближе к теплопроводности анализируемых веществ, чем теплопроводность водорода или гелия, то при количественном определении низкокипящих углеводородов сталкиваются с дополнительными затруднениями, обусловленными зависимостью поправочных коэффициентов от температуры. При этом может измениться не только значение, но и знак сигнала детектора (это, в частности, наблюдается для углеводородов С2). Кроме того, коэффициент чувствительности зависит от концентрации вещества. В связи с указанными обстоятельствами при определении К для низкокипящих углеводородов целесообразно проводить предварительную калибровку и обязательно в том же режиме, что и последующий анализ. Приведенные в литературе [15] данные, как указывают сами авторы, справедливы лишь в пределах 20—50 °С при использовании катарометров с термисторами. С повышением молекулярного веса анализируемых углеводородов температурная зависимость коэффициентов уменьшается, что позволяет применять имеющиеся данные в более широком интервале температур [22]. [c.223]

    Следует заметить, что существует некоторая аналогия в данных табл. 30 и табл. 31. Многие газы можно анализировать с одинаковым успехом любым из упомянутых способов, но в некоторых случаях наблюдается несоответствие. Так, метан в воздухе определяется с большей точностью по методу измерения скорости звука, чем по теплопроводности. С другой стороны, при анализе смеси гелия с воздухом измерение коэффициента теплопроводности оказывается методом высокой чувствительности, в то время как измерение скорости звука дает плохие результаты. [c.368]

    Теплопроводность воздуха (X — коэффициент теплопроводности в вт/(л град)) [c.455]

    Основным требованием к теплоизоляции, применяемой в криогенной технике, является, как это ясно из изложенного, минимальная величина коэффициента теплопроводности. Коэффициент теплопроводности некоторых изоляционных материалов, применяемых при низких температурах, лишь в 1,5—2 раза больше теплопроводности спокойного воздуха, а аэрогель кремниевой кислоты имеет даже более низкий, чем у воздуха коэффициент теплопроводности. [c.5]

    Если пренебречь теплопроводностью воздуха, то коэффициент теплопроводности слоя гранул полимера может быть найден по приближенной формуле  [c.111]

    При использовании детектора по теплопроводности и применении в качестве газа-носителя гелия или водорода изменение значений относительных коэффициентов чувствительности на различных хроматографах незначительно и составляет около 3—6% [62]. Трудности возникают при применении в качестве газа-носителя азота (аргона, воздуха), теплопроводность которого близка к теплопроводности анализируемых веществ. Так, для низкокипящих углеводородов относительные коэффициенты чувствительности заметно зависят от температуры и концентрации компонента, что при анализе углеводородов Сг может привести к инверсии пиков. Приводимые в литературе значения коэффициентов чувствительности для низкокипящих углеводородов справедливы лишь в узкой области температур 20—50 °С. [c.35]


    Дано температура воздуха камеры — 4 температура наружного воздуха — /н/, коэффициент теплопередачи ограждений, экранированных панелями, — Ад, ккал/ м ч град) их поверхность— fu, м -, температура - tn, °С коэффициент теплопередачи неэкранированных ограждений — k ,, ккал/ м -ч-град)-, их поверхность — Рн, м коэффициент теплоотдачи со стороны камеры —аз ккал/ м -ч-град)-, коэффициент теплоотдачи воздушного промежутка — ог ккал/(м -ч-град) коэффициент теплоотдачи хладагента (хладоносителя) —Oi ккал/ м -ч-град)-, тепло внутренних источников — Qbh ккал/ч-, диаметр трубы наружный— н М-, диаметр трубы внутренний — вн Щ толщина — 61 jh коэффициент теплопроводности ребра — ккал/ м-ч-град)-, [c.127]

    По экспериментальным данным вычисляли числа Нуссельта и Коэффициент теплопроводности влажного воздуха рассчитывали по формуле А. В. Нестеренко 15]. При обработке опытных данных важное значение имеет усреднение физических коэффициентов переноса влажного воздуха. Эти коэффициенты (к, , 0, а) зависят от температуры и влажности воздуха. Одни исследователи в качестве определяющей температуры принимают температуру стенки тела, другие — среднюю температуру пограничного слоя, третьи—температуру вне пограничного слоя. [c.102]

    Пример. Сосновую доску после окраски сушат односторонним облучением инфракрасными лучами. Толщина доски — 5 см, теплопроводность дерева Л = = 0,13 ккал/м-час-°С, удельный вес т = 550 кГ/м , удельная теплоемкость с = = 0,38 ккал/кГ -°С, коэффициент поглощения краски а = 0,78. Используются лампы, дающие на поверхности доски излучение = 2000 ккал/м" час. Начальная температура доски = 20°. Во время нагревания вдоль обеих поверхностей доски продувается воздух с температурой 20°. По скорости воздуха определен коэффициент конвекции й = 10 ккал/м час С. [c.393]

    Причиной уменьшения величины коэффициента теплоотдачи вдоль лицевой поверхности трубки в направлении движения жидкости является незначительная теплопроводность воздуха. Все падение температуры происходит здесь в пограничном слое, толщина которого увеличивается. На задней поверхности трубки коэффициент теплоотдачи вновь повышается под действием вихревого течения. Если величина Ке является незначительной, то и коэффициент теплоотдачи является небольшим. При малых значениях Ке теплоотдача задней половины цилиндра меньше, чем передней. Так, при значениях критерия Рейнольдса приблизительно до Ке = 10 этой частью поверхности цилиндра передается ориентировочно до 30% тепла. При больших значениях Ке [c.75]

    Арго и Смит приводят результаты расчета эффективного коэффициента теплопроводности 3. Исходные данные через зернистый слой, состоящий из частиц окиси алюминия размером /а" (3,18 мм) с коэффициентом теплопроводности Л, = = 0,744 ккал/(м-ч-град), протекает сухой воздух. Слой, порозность которого = 0,4, находится в трубе внутренним диаметром 50,8 мм. Температура стенки трубы равна 20()°С. Расчет производился для двух случаев 1) массовая скорость G = = 717 кг/(м -ч) 2) G = 2405 кг/ яе--ч). [c.64]

    Величину коэффициента А в среднем можно принять равной 2,1. Коэффициент теплопередачи аг имеет единицу измерения Вт/(м К). В качестве тепловой изоляции используют синтетические и минеральные материалы, имеюш,1 е пористую структуру с замкнутыми мелкими порами, в которых исключается теплопередача конвекцией. Как известно, тонкие слои воздуха являются хорошей изоляцией при толщинах, исключающих возникновение свободной конвекции. Такие пористые материалы имеют весьма малые значения коэффициента теплопроводности, что позволяет при определенной толщине слоя изоляции (обычно до 150 мм) и ее конструкции получить большую величину термического сопротивления стенки. [c.174]

    Здесь т — время г — внутренний радиус трубопроводов б—толщина отложений у — кинематическая вязкость воздуха ив — скорость воздуха 1 — температура поверхности масляных отложений t — температура воздуха а — коэффициент излучения X — теплопроводность воздуха а — температуропроводность воздуха Е — энергия активации ко — предэкспоненциальный множитель (р — коэффициент в формуле Крауссольда АТ — среднеарифметическая температура воздуха и поверхности отложений д — тепловой эффект реакции р — стехиометрический коэффициент Со — массовая концентрация кислорода вдали от реагирующей поверхности Ро — атмосферное давление р — давление сжатого воздуха с — теплоемкость отложений р—кажущаяся плотность отложений. [c.34]

    В обычных сушильных печах, например, поверхностному испарению препятствует относительно высокая влажность в горячей атмосфере, необходимая для обеспечения проникновения тепла в толщу материала. Этот процесс протекает медленно и неэкономично вследствие низкой теплопроводности материапа и трудности регулировки. Это относится к таким материалам как древесина, пшеница, волокна и другие. Если материалы нагреваются неравномерно, то оптимальная максимальная скорость сушки может быть установлена для каждого частного случая путем подбора температуры воз.цуха и относительной влажности. Выход влаги зависит от градиенла влагосодержания (01 материала к воздуху) и коэффициента диффузии. Последний существенно растет с ростом температуры материала. [c.13]


    Е. А. Столяров [Л. 25 и 26] на основе аналпза экспериментальных данных по Нз, N3, СН , СО и воздуха рекомендует коэффициент теплопроводности газов и паров при изменении температуры и давления определять по эмпирической формуле [c.71]

    ОТ температуры, если в качестве газа-носителя применять водород или ге.дий (практически мо кно считать, что они остаются постоянными по крайней мере при температуре 0 — 150° С). Если же газом-посителом является азот или воздух, величины коэффициентов сильно зависят от температуры, поэтому приведенные в табл. 2 их значения пригодны только в узких пределах температуры от 20 до 50 С и лишь для детекторов с термисторами. Поскольку теплопроводность углеводородов Сз близка к теплопроводности азота (и воз.духа), то чувствительность детектора по этану и этилену очень мала, даже при комнатной температуре, а при 50° С обнаружить их детектором по теплопроводности почти не удается. [c.87]

    Если прибор имегт градуировку по воздуху с коэффициентом теплопроводности kJ, а применяется для измерения давления других газов, то по его показаниям Р можно определить истинное давление Р , умножив Р на — коэффициент относительной чувствительности манометра к данному газу [c.59]

    В жидкостях и газах кроме теплопроводности теплопередача осуше-ствляется конвекцией, т. е. механическим перемешением нагретых частей. Почти всегда при соприкосновении жидкости или газа с твердыми стенками, имеюшими более высокую или более низкую температуру, в жидкости или газе возникают течения нагревшаяся жидкость (или газ) поднимается, а охладившаяся опускается. Этот процесс происходит вследствие уменьшения плотности жидкости или газа при повышении их температуры. В очень узких слоях, например в слое воздуха между двумя близко расположенными оконными стеклами, конвекционные течения слабы. Если конвекционные течения возникли, они способствуют быстрому прогреванию жидкостей и газов при отсутствии конвекции (в случае, когда вверху расположена нагретая жидкость, а внизу — охлажденная) прогревание и жидкостей, и газов замедляется вследствие их ничтожной теплопроводности. Коэффициент теплопроводности жидкостей лежит в пределах 0,08—0,6 ккал/(м-ч)°С, а газов — 0,05— 0,5 ккал/(м-ч)°С. [c.25]

    При выводе формул предполагалось, что отдельные слои тесно прилегают друг к другу и поэтому обладают в плоскостях соприкосновения одинаковой температурой. Однако, если поверхности соприкосновения являются шероховатыми, то полное соприкосновение ло всей плоскости соприкасания невозможно между отдельными слоями имеются воздушные прослойки. Наличие воздушных прослоек из-за низк01Г0 значения коэффициента теплопроводности воздуха (к = 0,02) в значительной степени уменьшает теплопроводность многослойной стенки. Такое же действие производят окислы металлов. Поэтому при измерении теплопроводности многослойной стенки следует учитывать тщательность выполнения контакта между отдельными слоями. [c.25]

    Коэффициент теплопроводности стали Хс = 39 ккал/м час °С, чугуна Хт = = 54 ккал1м час°С, воздуха X = 0,02 ккал1мчас°С. Коэффициент теплопередачи при идеальном соединении слоев стали и чугуна [c.158]

    При использовании указанных выше формул для расчета скорости нспа рения топлив важным является определение теплофизических констант. Теплоту испарения у, теплоемкость жидкой фазы Ст, давление насыщенного пара Р, следует брать при температуре поверхности капли Тя, коэффициенты диффузии Da и температуропроводности а, кинематическую вязкость V и теплоемкость паров ср.а —при температуре пограничного слоя Гт коэффициеп теплопроводности среды — при температуре воздуха Гв. При высокотемп >а-туриом испарении (7 в>7, ) обычно используют уравнение (3 9в), при Гн Г, применяют формулу (3.29а). Если давление насыщенных паров (Р ) мало по сравнению с давлением окружающей среды (Р), можно пользовать ся уравнением (3.19), [c.109]

    Шулером, Сталингсом, Смитом проведены экспериментальные исследования Хаф слоя цилиндрических зерен диаметром Vs", Vie" и Д" в трубе внутренним диаметром 50,8 мм, через которую пропускается воздух. На рис. 1-48, 1-49 и 1 0 показаны кривые, соответствующие значениям %зф, вычисленным по приведенным выше формулам. Точки на этих графиках соответствуют экспериментальным данным. При расчетах учитывалось, что величина эффективного коэффициента теплопроводности зависит от радиального расстояния. На рис. 1-51 показана зависимость критерия Пекле для теплообмена, определяемого по формуле [c.65]

    Интенсивность теплообмена в псевдоожиженном слое зависит от скорости ожижающего агента и его теплопроводности, размера и плотности твердых частиц, их теплофизических свойств, геометрических и конструктивных особенностей аппаратуры и ряда других факторов. Из-за множества независимых переменных и сложности их влияния на теплообмен предложенные эмпирические формулы для расчета коэффициентов теплоотдачи, как правило, справедливы лишь в областях, ограниченных условиями экспериментов, на которых они базируются. Эти формулы, разнообразные по структуре, количеству и качественному составу входящих в них переменных, можно разделить на две группы, из коих одна относится к определению /imax (а также Z7opt), а вторая — к расчету h на восходящей или нисходящей ветви кривой h — и. Ниже приводится сопоставление ряда предложенных формул для произвольно выбранной модельной системы стеклянные шарики [плотность pj = 2660 кг/м , насыпная плотность 1660 кг/м , теплоемкость s = 0,8 кДж/(кг -К) = = 0,19 ккад/(кг -°С)] — воздух (или вода) при 20 °С. [c.415]

    В расчетах сжигания мазута при определении площади поверхности нагрева змеевиков и расхода теплоты на разогрев удельную теплоемкость мазута можно принять равной Сср = 2 кДж/(кг-К), а коэффйциент теплопроводности 0,13 Вт/(м-К). Теплота плавления мазута равна 170—250 кДж/кг. Оптимальное значение коэффициента расхода воздуха, необходимого для полного сгорания мазута, принимают обычно а = 1,1-ь1,2. При тонком распылении, хорошем смесеобразовании и благоприятных условиях в рабочей или топочной камере полное сгорание топлива достигается при а = 1,05ч-1,1. [c.147]

    Коэффициенты теплоотдачи жидкостей зависят от их свойств н скоростей течений. На величину оу оказывают также влияние фазовые переходы, такие как испарение или конденсация. Важнейшими физическими свойствами жидкости, определяющими теплоперенос, являются теплопроводность X, плотность р и вязкость Г). Это наглядно видно из табл. 2. Хотя коэффициенты вязкости t и тгпдапро-водности X воздуха почти не зависят от давления, а значительно выше при течении воздуха в условиях высокого давления (при той же скорости течения) вследствие большего массового расхода (ш. Для всех жидкостей, однако, р практически постоянно, поэтому массовый расход ри определяется вязкостью 1]. За исключением очень вязких жидкостей, важнейшим свойством в этом случае является теплопроводность X. Коэффициент теплопроводности воды [c.77]

    С. Пример расчета. Рассмотрим печь диаметром 6 м, в которой сгорает 0,15 кг/с газообразного топлива с наименьшей теплотворной способностью 5-10 Дж/кг, расход воздуха составляет 2,7 кг/с, воздух и топливо поступают при 500 К. Заготовка нри 900 К покрыта слоем шлака 6 мм с коэффициентом теплопроводности 2 Вт/(м-К) и степенью черноты 0,48. Свод из огнеупорных материалов имеет площадь 50 м . Топочные газы имеют теплоемкость 1200 Дж/(кг-К) и степень черноты =0,25, соответствующую расчетной средней длине пути луча при оцениваемом значении температуры. Необходимо рассчитать Т , Тх и скорость переноса теплоты в заготовку. В пренебрежении конвекцией задача сводится к случаю 2 с газообразным источником, адиабатной поверхностью и стоком. Начнем с расчета АхЦГх-е по уравнению (33). Получим следующую величину (полагая 1-2 2-2)  [c.499]


Смотреть страницы где упоминается термин Воздух теплопроводности коэффициент: [c.252]    [c.202]    [c.368]    [c.107]    [c.167]    [c.233]    [c.107]    [c.167]    [c.74]    [c.257]    [c.923]    [c.279]    [c.231]   
Справочник по разделению газовых смесей методом глубокого охлаждения (1963) -- [ c.89 , c.91 , c.95 , c.97 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент воздуха

Коэффициент теплопроводности

Теплопроводность коэффициент теплопроводности



© 2025 chem21.info Реклама на сайте