Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

РНК-полимераза синтез в цитоплазме

    Клетки эукариот богаты различными органеллами. Прежде всего это клеточное ядро, в котором происходят все процессы с участием ядерной ДНК, входящей в состав хроматина, в первую очередь процессы репликации, репарации и транскрипции. Даже в пределах ядра имеется распределение процессов между отдельными его частями. Наиболее четко это выражено в случае синтеза рибосомных РНК и формирования рибосом. Участки хроматина, содержащие гены рибосомных РНК, находятся в виде петель хроматина в определенной области ядра, называемой ядрышком. Здесь происходит их транскрипция с помощью РНК-полимеразы I и первые фазы формирования рибосом. Рибосомные белки, необходимые для сборки рибосом, поступают из цитоплазмы, в которой сосредоточено их производство. [c.432]


    После заражения клетки наружная белковая оболочка вируса повреждается и в цитоплазме оказывается модифицированная вирусная частица. Имеющиеся в клетке рибонуклеозидтрифосфаты получают доступ к вирусной сердцевине, которая содержит 10 сегментов двухнитевой геномной РНК и несколько белков, в том числе РНК-полимеразу, способную использовать РНК-дуплекс в качестве матрицы. Начинается асимметрический и консервативный синтез [c.328]

Рис. 4.41. Краткая схема этапов синтеза белка на примере гемоглобина. Нуклеотиды ДНК гена гемоглобина транскрибируются (транскрипция) ферментом РНК-полимеразой с образованием гетерогенной ядерной РНК (гяРНК) Интроны, поскольку они не содержат структурную информацию, вырезаются. мРНК переносится из ядра темно-серое) в цитоплазму светло-серая), где Рис. 4.41. <a href="/info/1470362">Краткая схема</a> <a href="/info/1546445">этапов синтеза белка</a> на <a href="/info/1353584">примере гемоглобина</a>. Нуклеотиды ДНК <a href="/info/566440">гена гемоглобина</a> транскрибируются (транскрипция) ферментом РНК-полимеразой с <a href="/info/742124">образованием гетерогенной</a> ядерной РНК (гяРНК) Интроны, поскольку они не содержат <a href="/info/304251">структурную информацию</a>, вырезаются. мРНК переносится из ядра <a href="/info/266411">темно-серое</a>) в цитоплазму светло-серая), где
    Транскрипция — это процесс синтеза молекулы информационной РНК на участке молекулы ДНК (гене), как на матрице, в котором закодирована информация о структуре белка. Сначала специфические ферменты (ДНК-полимеразы) разрывают водородные связи между азотистыми основаниями двух комплементарных цепей ДНК. Далее происходит раскручивание участка спирали ДНК, и на одной из двух ее цепей с участием фермента РНК-полимеразы синтезируется молекула иРНК по принципу комплементарности (см. рис. 96, а). Таким образом происходит переписывание информации о структуре белка. В комплексе с ядерными белками иРНК выходит из ядра в цитоплазму, а ДНК восстанавливает свою структуру. Этот этап происходит в ядре и является началом запуска синтеза конкретного белка, который осуществляется на рибосомах. [c.251]

    По-видимому, ядерная оболочка приспособлена к тому, чтобы закрывать содержимое ядерного компартмента (нуклеоплазму) от множества частиц, филаментов и больших молекул, работающих в цитоплазме. Зрелые цитоплазматические рибосомы, например, слишком велики, чтобы проникать через эти 9-нанометровые каналы, поэтому весь белковый синтез ограничивается цитоплазмой. Непонятно только, как же попадают в ядро большие молекулы, которые там необходимы, например, ДНК- и РНК-полимеразы, имеющие мол. массу субъединиц от 100 до 200 кДа Недавно получены доказательства того, что эти и многие другие ядерные белки взаимодействуют с белками-рецепторами, расположенными на границе ядерных пор, и эти рецепторы активно переносят большие белки в ядро, увеличивая канал поры. [c.25]


    В ряде лабораторий (в частности, в лаборатории С. Бреннера) были получены данные о возможности существования в клетках в соединении с рибосомами короткоживущей РНК, названной информационной (иРНК). Сейчас она обозначается как матричная РНК (мРНК), потому что ее роль заключается в переносе информации от ДНК в ядре (где она синтезируется под действием ДНК-зависимой РНК-полимеразы) до цитоплазмы, где она соединяется с рибосомами и служит матрицей, на которой осуществляется синтез белка. Эта блестящая гипотеза затем экспериментально бьша доказана в лаборатории М. Ниренберга. При изучении влияния различных фракций клеточной РНК на способность рибосом, выделенных из Е. oli, к синтезу белка было установлено, что некоторые из них стимулировали включение С-аминокислот в синтезируемый полипептид. Добавление синтетического полинуклеотида, в частности полиуридиловой кислоты (поли-У), в белоксинтезирующую систему приводило к включению в синтезирующуюся белковую молекулу единственной аминокислоты -фенилаланина. Поли-У вызывал синтез в бесклеточной системе необычного полипептида полифенилаланина. Таким образом, искусственно синтезированный полирибонуклеотид, добавленный к препаратам рибосом, включавшим известные к тому времени факторы белкового синтеза и источники энергии, вызывал синтез определенного, запрограммированного полипептида. [c.519]

    Синтез первичных транскриптов. Вскоре после попадания вирусной ДНК в клеточное ядро начинается транскрипция района Е1. (рис. 159). Этот район содержит регуляторные элементы, в Частности Т.4Т.4-последовательность и энхансер, обеспечивающие эффективное считывание при помощи РНК-полимеразы II. После процессинга первичны.х транскриптов (см. с. 305), выхода образовавшихся мРНК в цитоплазму и их трансляции появляется несколько [c.303]

    В ходе развития клетки конформации гистонов и НГБ и их ДНК-комплексов изменяются и геном испытывает функциональные изменения, становясь более или менее доступным действию регуляторных белков цитоплазмы. На гигантских хромосомах двукрылых насекомых на определенной стадии развития появляются пуффы — вздутые участки, являющиеся локусами наиболее интенсивного синтеза РНК. В этих участках происходят химические и конформационные изменения гистонов, что и обеспечивает изменение функциональности соответствующих генов. Но-видимому, в пуффах гистоны слабее связаны с ДНК, они более доступны действию протеаз и легче отделяются. Соответственно в пуффах гистоны не мешают работе РНК-полимеразы. В нормальных условиях гистоны препятствуют транскрипции. [c.296]

    Митохондрии располагают своим собственным аппаратом для хранения и экспрессии их генетической информации. Эта информация, содержащаяся в митохондриальной ДНК, включает программы для синтеза специальных митохондриальных транспортных и рибосомных РНК. Кроме того, в митохондриальной ДНК запрограммировано несколько полипептидов, участвующих в выполнении основных функций митохондрий. В их числе некоторые из субъединиц цитохром оксидазы и АТФ-синтазы. Однако ббльшая часть белков программируется в ядре и синтезируется в цитоплазме вне митохондрий. Это же полностью относится к белкам, обслуживающим генетический аппарат митохондрий к митохондриальным ДНК- и РНК-полимеразам, к белкам митохондриальных рибосом, которые резко отличаются от цитоплазматических рибосом и по своим основным характеристикам приближаются к рибосомам прокариот, а также к аминоацил—тРНК-синтетазам, катализирующим аминоацилирование митохондриальных тРНК. Следовательно, митохондрии должны располагать механизмом для транспорта в них широкого спектра белков, синтезируемых в цитоплазме. То же в общих чертах можно отнести и к функционированию генетического аппарата хлоропластов. [c.434]

    Биохимические функции. Так же как и другие стероиды, эстрогены проникают в цитоплазму и далее в составе гормон-рецепторного комплекса в ядро клеток. Эстрогены не влияют непосредственно на РНК-полимеразу, но резко стимулируют процессы инициации транскрипции. Усиление синтеза специфических белков в репродуктивных органах инициирует ряд зависимых процессов на клеточном и органном уровнях. Так, эстрогены контролируют процессы овуляции за счет индукции секреции лютеинизирующего гормона по принципу обратной связи. Прогестерон обеспечивает эффективность имплантации оплодотворенной яйцеклетки в матке, а также стабилизирует мембранный потенциал миометрия, что способствует сохранению беременности. [c.163]

    АТФ — это адениновый нуклеотид, к фосфату которого присоединены еще две фосфатные группы. Его полное имя— аденозинтрифосфат. Забирая энергию у АТФ, фермент отщепляет у него одну фосфатную группу, делая из него АДФ, т. е. аденозиндифосфат. В митохондриях происходит подзарядка — к АДФ вновь присоединяется фосфатная группа. Но к нашему рассказу все это не имеет прямого отношения. Для нас важно другое митохондрии имеют свою собственную ДНК. Более того, митохондрии располагают своей собственной РНК-полимеразой, которая снимает мРНКовую копию с митохондриальной ДНК Но и это не все. В митохондриях есть свои рибосомы, свой собственный аппарат белкового синтеза. Это уже совсем странно — ведь в той же цитоплазме множество нормальных клеточных рибосом. Но на этих рибосомах синтезируется белок только с мРНКовых копий ядерной ДНК. Митохондрии ими пользоваться почему-то не желают. [c.72]


    Существование этого фермента было продемонстрировано также в цитоплазме L-клеток после заражения их вирусом Менго [139]. Но поскольку синтез всей клеточной РНК в отличие от синтеза вирусной РНК происходит, вероятнее всего, в ядрах (стр. 244), то эта РНК-зависимая РНК-полимераза является, по-видимому, фагоспецифичной. Подобные результаты были получены и в опытах с нолиовирусом [211]. [c.248]

    Увеличение удельной радиоактивности фракций иРНК, рРНК и цРНК в печени на ранних сроках лучевой болезни может быть следствием активации синтеза ядерных РНК и их перехода в цитоплазму. По-видимому, сразу после облучения может происходить ослабление и разрыв части водородных связей между комплементарными основаниями в молекуле ДНК-матрицы, что облегчает транскрипцию ДНК РНК-полимеразой. Показанное многими исследователями угнетение процессов нуклеинового синтеза на более поздних стадиях развития лучевого поражения может быть обусловлено ферментативной деструкцией макромолекул ДНК. [c.188]

    Хотя у мутантов petite нет митохондриального синтеза белка и поэтому они не образуют митохондрий, способных синтезировать АТР, тем не менее > них есть митохондрии с нормальной наружной мембраной, но с плохо развитыми кристами внутренней мембраны (рис. 7-72). В таких митохондриях имеются практически все митохондриальные белки, кодируемые ядерным геномом и переносимые в органелл> из цитозоля, в том числе ДНК- и РНК-полимеразы, все ферменты цикла лимонной кислоты и большинство белков внутренней мембраны. Это наглядно демонстрирует нреобладаюшую роль ядерного генома в биогенезе митохондрий. Кроме того, ясно, что органеллы, способные делиться надвое, могут неопределенно долго воспроизводиться в цитоплазме нролиферируюших эукариотических клеток даже нри полном отсутствии собственного генома. Многие биологи полагают, что таким же путем обычно воспроизводятся пероксисомы (разд. 8.5.2). [c.496]

    Синтез РНК (транскрипция ДНК) обладает высокой енецифичноетью. Например, в большинстве клеток млекопитающих функциональные последовательности РНК копируются приблизительно с 1% последовательностей ДНК (зрелая матричная РНК или структурная РНК) Отбор происходит на двух уровнях, которые будут по очереди обсуждаться в этом разделе 1) для образования ядерных РНК транскрибируется лишь часть последовательности ДНК и 2) только меньшая часть нуклеотидных последовательностей ядерной РНК остается после процее -синга, который предшествует экспорту молекул РНК в цитоплазму. Начнем с описания РНК-полимеразы - фермента, катализирующего всю транскрипцию ДНК. [c.144]

    Хотя у мутантов petite нет митохондриального синтеза белков и поэтому нормальных митохондрий не образуется, тем не менее такие мутанты содф-жат промитохондрии, которые в известной мере сходны с обычными митохондриями, имеют нормальную наружную мембрану и внутреннюю мембрану со слабо развитыми кристами (рис. 9-66). В промитохондриях имеются многие ферменты, кодируемые ядерными генами и синтезируемые на рибосомах цитоплазмы, в том числе ДНК- и РНК-полимеразы, все ферменты цикла лимонной кислоты и многие белки, входящие в состав внутренней мембраны. Это наглядно демонстрирует преобладающую роль ядерного генома в биогенезе митохондрий. [c.60]

    Развитие фага X осуществляется в три этапа и начинается с предраннего периода, который охватывает время от появления его ДНК в цитоплазме до синтеза первых фаговых проду ктов. В предраннем периоде развития принимают участие только бактериальные ферменты ДНК-лигаза (превращает линейную молекулу Я ДНК в кольцевую) и РНК-полимераза (осуществляет считывание регуляторных генов N vi его с промоторов pL и pR). Образовавщиеся в этот период цепи мРНК обрываются в терминирующих сайтах tLl и tRl (рис. 4.1,6) благодаря действию клеточного фактора терминации Rho. [c.106]

    НОСИТСЯ в цитоплазму клетки. Бактериальные полимеразы осуществляют синтез второй, (-)-цепи, образуя двухцепочечнзто репликативную форму (РФ) фагового генома. Синтез второй цепи инициируется на ori -), расположенном в межгенной области IR (рис. 2.26). На молекулах РФ осуществляется транскрипция и последующая трансляция фаговых генов. Белок рП вносит разрыв в (+)-цепь РФ в участке огг(+), также расположенном в межгенной области IR. Это приводит к репликации фаговой ДНК по модели катящегося кольца с высвобождением (+)-цепи. По заверщении цикла белок рП лигирует концы образовавшейся одноцепочечной (+) ДНК. На ранних этапах инфекции новые (+)-цепи служат в качестве матриц для образования дополнительных молекул РФ, однако по мере накопления фагового белка pV, связывающего оцДНК, процесс формирования РФ тормозится. Копийность РФ составляет 200-300 молекул на клетку. [c.111]


Смотреть страницы где упоминается термин РНК-полимераза синтез в цитоплазме: [c.309]    [c.324]    [c.309]    [c.324]    [c.490]    [c.105]    [c.196]    [c.445]    [c.506]    [c.72]    [c.474]    [c.258]    [c.83]    [c.216]    [c.218]    [c.84]    [c.64]    [c.148]    [c.306]    [c.475]    [c.128]    [c.83]    [c.216]    [c.218]    [c.20]    [c.258]    [c.474]    [c.127]   
Гены (1987) -- [ c.283 ]




ПОИСК





Смотрите так же термины и статьи:

Цитоплазма



© 2024 chem21.info Реклама на сайте