Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Геном рекомбинантные конструирование

    Векторные плазмиды и векторные вирусы со встроенными чужеродными генами часто называют гибридными (шти химерными) плазмидами (или фагами). После конструирования рекомбинантных ДНК их с помощью трансформации вводят в реципиентный организм бактериальную, грибную, растительную или животную клетку. Трансформация предусматривает предварительную обработку клеток соединениями, обусловливающими проникновение ДНК внутрь клеток с последующим их помещением в среду, в которой способны существовать только клетки, получившие векторную молекулу, например в среду с определенным антибиотиком. [c.120]


    После конструирования вектора рекомбинантные плазмиды смешивают с клетками для трансформации. Например, клетки кишечной палочки со встроенным вектором выращивают на питательной среде, и в процессе этого роста образуются рекомбинантные ДНК, содержащие гены из разных организмов. Поскольку при этом образуются сходные молекулы (клоны), такой процесс называется клонированием. Далее клонированную ДНК вводят в клетки, где и происходит экспрессия генов, т.е. процессы транскрипции и трансляции с образованием необходимого белка. [c.61]

    Клонирование генов, расположенных в плазмидах по очевидным причинам не представляет сколь-нибудь значительных методических трудностей. В свете сказанного понятен тот факт, что на первых порах клонированию подвергались в основном гены с плазмидной локализацией. Сложнее обстоит дело в случае хромосомных генов. Для конструирования банка рекомбинантных плазмид применяется типичный арсенал известных методов генной инженерии, который в случае клонирования генов гт не имеет какой-то специфики. Специфика заключается в методах отбора искомых клонов, выборе реципиентных щтаммов и векторов для клонирования. [c.185]

    В генетической инженерии с целью получения белков в достаточных количествах и с заданными свойствами (например, для генотерапии наследственных и соматических болезней) широкое применение получили эндонуклеазы рестриктазы, катализирующие расщепление молекулы двухцепочечной ДНК по специфическим нуклеотидным последовательностям внутри цепи. Рестриктазы узнают определенные 4-7-членные последовательности, вызывая, таким образом, разрывы в определенных сайтах цепи ДНК. При этом образуются не случайные последовательности, а фрагменты ДНК строго определенной структуры с липкими концами (рекомбинантные ДНК), используемые далее для конструирования гибридных молекул и получения генно-инженерной, биотехнологической продукции (например, инсулина, гормона роста, интерферона, вакцин против вируса гепатита В, СПИДа и др.). [c.481]

    Современное руководство по биотехнологии, написанное авторитетными канадскими учеными. В книге подробно изложены основы генной инженерии механизмы репликации, транскрипции и трансляции методы клонирования, амплификации и секвенирования ДНК конструирование рекомбинантных ДНК введение последовательностей-мишеней в геном микроорганизмов, растений и животных, а также практическое применение генной инженерии для получения лекарственных веществ, вакцин, факторов роста, инсектицидов и т.д. Большое внимание уделено генной терапии и связанным с ней морально-этическим проблемам, патентованию биотехнологических продуктов и способов их получения. [c.4]


    История развития генной инженерии насчитывает не более тридцати лет. Ее становление связано с конструированием векторных молекул, получением рекомбинантных ДНК, а также включением в векторы генов животных и человека. Невозможно связать генную инженерию с одним каким-либо открытием, так как она представляет собой совокупность приемов и методов, направленных на создание искусственно модифицированных генетических программ. В предыдущей главе рассмотрены процессы генетической рекомбинации, происходящие при синтезе антител в природных условиях. Возможно эти процессы и явились толчком для проведения опытов, связанных с получением рекомбинантных генов искусственным путем. [c.499]

    Общепринятые методы работы с рекомбинантной ДНК позволяют переносить генетическую информацию от одного организма к другому. Однако клонированная чужеродная ДНК содержит небольшое число генов, часто только один структурный ген, кодирующий один белок, который катализирует определенную реакцию. Учитывая генетические методы получения штаммов микроорганизмов, способных к детоксикации окружающей среды, значение общепринятых методов конструирования рекомбинантной ДНК ограничено. С этой целью более широко используется конструирование необходимых организмов при помощи природных генетических механизмов обмена. Очевидно, однако, что конструирование рекомбинантной ДНК может быть использовано для усовершенствования этих деградативных [c.329]

    Некоторые изменения в организации и изложении материала по сравнению с первым изданием начинаются уже в первой части. Раздел о составлении хромосомных карт у эукариот (глава 5) был переписан и расширен в соответствии с замечаниями преподавателей и наших собственных студентов. Новая глава 6 посвящена комплементационному анализу и изучению тонкой структуры гена как у прокариот, так и у эукариот. Глава, в первом издании шедшая под номером девять, (Репликация, репарация и рекомбинация ДНК) превратилась в главы 13 и 14, перенесенные во вторую часть, поскольку акцент смещен на функционирование генов, обеспечивающих процессы репликации и рекомбинации ДНК. Новая глава 9 Методы работы с ДНК завершает первую часть, поскольку вопросы конструирования рекомбинантных ДНК и анализа последовательности нуклеотидов в ДНК, строго говоря, относятся к теме Организация и передача генетического материала . Главы 6 и 7 были дополнены новыми появившимися в последние годы данными и получили в этом издании номера 7 и 8 соответственно. Значительная часть материала, входившего ранее в главу 8, в этом издании помещена в главы 6 и 14. [c.8]

    Особую ценность для генной инженерии представляют рестриктазы, под действием которых образуются фрагменты с само-комплементарными липкими концами они эффективно используются при конструировании рекомбинантных молекул. [c.141]

    Преципитация комплекса РНК/антиген из цитозоля при конструировании обогащенных генных библиотек для синтеза антигенов с помощью технологии рекомбинантных ДНК. [c.16]

    Способность микроорганизмов разрушать ксенобиотик или другой поллютант зависит от наличия в клетках генов, определяющих синтез ферментов, участвующих в деградации соединения. Конструирование рекомбинантных штаммов - деструкторов ксенобиотиков закл очается в объединении нескольких генов или их блоков, ответственных за первичный [c.341]

    Приемы конструирования векторов, экспрессирующих рекомбинантные гены в бактериальных клетках, а также основные проблемы, возникающие при попытках экспрессии чужеродных генов в бактериях, были уже кратко рассмотрены в разделе 3.6. Здесь же мы проиллюстрируем этот материал некоторыми современными достижениями в разработке бактериальных систем экспрессии. [c.168]

    Примерно такой, но на самом деле намного более сложный, путь исследований в генной инженерии привел за последние 30 лет к клонированию множества генов, в том числе и неизвестных ранее, определению их структуры и особенностей функционирования. Аналогичные подходы легли в основу многих новых направлений молекулярной биологии и генетики. Об использовании этих методов при целенаправленном конструировании рекомбинантных белков речь пойдет во второй части книги. [c.254]

    Свойство ДНК фага Ми образовывать коинтеграты используют для переноса генов и конструирования in vivo рекомбинантных плазмид. С помощью этого фага осуществляют, например, интеграцию кольцевых генетических элементов (фаговые или плазмид-ные ДНК) в бактериальную хромосому по механизму, представленному на рис. 2.2. В таких случаях интегрированный элемент оказывается фланкированным двумя профагами Ми. [c.62]

    Общая характеристика генетической инженерии Гене-тическая инженерия — это методы получения рекомбинантных ДНК, объединяющих последовательности разного присхождения Некоторые ученые трактуют генетическую инженерию "как искусство использования знаний, методов и техники физико-хими-ческой биологии и молекулярной генетики для конструирования [c.177]


    Введение чужеродного гена в клетки организма-продуцента — это отнюдь не единственный генно-инженерный способ конструирования новых штаммов. Иногда оказывается полезным клонирование собственных генов организма. Так, если известно, что определенная ферментативная реакция лимитирует скорость какого-то метаболитического процесса, то введение многих копий соответствующего гена в рекомбинантные плазмиды может ликвидировать это узкое место благодаря образованию большего числа молекул фермента. Главной областью применения самоклонирования , видимо, может стать направленный мутагенез. При обычном методе получения новых штаммов с помощью мутагенеза и отбора действию мутагена подвергается весь геном организма-продуцента. При этом, естественно, не гарантируется, что полезные мутации произойдут именно в интересующих нас генах. Мутируют также и другие гены, и некоторые из таких мутаций неблагоприятно повлияют на жизнеспособность организма-продуцента. Если же провести клонирование нужных генов, то их обработку мутагеном можно провести in vitro, а затем вернуть эти гены в организм, Это гарантирует получение только желаемых мутаций. [c.321]

    С разработкой в 70-х годах методов работы с ДНК in vitro наметились два возможных направления развития этого подхода, Первое — получение труднодоступных природных белков,, а второе — конструирование новых белков путем мутагенеза in vitro. В наши дни появилась возможность экспрессировать клонированные гены в различных прокариотических и эукариотических клетках-хозяевах. В частности, в клетках Е. соИ может быть осуш,ествлен эффективный и контролируемый синтез рекомбинантных полипептидов. [c.95]

    Конструирование рекомбинантных молекул иа базе подобных векторов, т. е. введение в них гетерологичных структурных генов, осуществляется с помощью стандартных молекулярногенетических процедур [8, 9]. Аммерер [26] опубликовал интересную методическую статью, посвященную экспрессии в дрожжах генов с использованием промотора add. Эффективность лигиро- [c.218]

    Интенсивные исследования последних лет принесли и продолжают приносить новые знания о механизмах, обеспечивающих высокоэффективную и высокоспецифическую экспрессию генов [15]. Эту информацию успешно используют для эффективной экспрессии рекомбинантных генов в гомологичном или гете-рологичном генетическом окружении [117]. После рассмотрения основных принципов конструирования векторов для клонирования ДНК можно перейти к обсуждению проблемы экспрессии клонированных генов в искусственных генетических системах. Именно экспрессия клонированных генов является одной из основных задач генной инженерии и биотехнологии. Действительно, функциональную роль отдельных генов и их частей в живом организме можно понять и оценить лишь на основании экспрессии этих последовательностей, т.е. по фенотипическому проявлению их потенциальных биологических возможностей. Кроме того, крупномасштабная наработка биотехнологических продуктов требует осуществления эффективной экспрессии конкретных генов в искусственно созданных условиях. Для получения полноценной экспрессии клонированных генов используют экспрессирующие векторные системы, принципы конструирования которых в настоящее время хорошо разработаны. [c.104]

    Типовой эксперимент в генной инженерии состоит из следующих этапов 1) получение фрагмента (или смеси фрагментов) ДНК 2) конструирование in vitro рекомбинантных молекул ДНК, состоящих из фрагментов, полученных на первом этапе, и небольших автономно реплицирующихся в клетке-реципиенте структур (плазмид, фагов, вирусов), носящих название векторов  [c.136]

    Современные ВАС-векторы позволяют клонировать фрагменты ДНК длиной до 300 т.п.о. и выше. Рекомбинантные молекулы вводятся в клетки Е. соИ с помощью электропорации (см. раздел 3.8), причем эффективность образования трансформантов в 10-100 раз выше, чем при обычной трансформации сферопластов дрожжей векторами семейства YA . Это позволяет уменьшить исходное количество ДНК, необходимое для конструирования репрезентативных клонотек генов (см. гл. 4). При скрининге таких клонотек используются традиционные методы работы с бактериальными колониями. В отличие от Y АС-ДНК, которая находится в клетках дрожжей в линейной форме, ВАС-векторы со вставками, как и традиционные F -факторы, существуют в бактериальных клетках в виде кольцевых суперскрученных молекул. Это облегчает их выделение и последующую работу с рекомбинантными молекулами ДНК в растворе, а кроме того, допускает повторное введение в бактериальные клетки этих ДНК, выделенных мини-препаративными методами. Поскольку рекомбинантные ВАС-векторы существуют в бактериальных клетках в виде одной копии, исключаются совместное клонирование в одной клетке разных фрагментов ДНК и образование химерных молекул, что очень важно для физического картирования больших геномов методами снизу вверх . Весьма существенным свойством системы клонирования, основанной на векторах семейства ВАС, является ее генетическая стабильность. Исходная структура клонированных фрагментов ДНК в пределах точности использованных методов сохраняется в таких векторах даже после 100 серийных пересевов бактериальных клеток, содержащих рекомбинантные молекулы ДНК. Все вышеперечисленные свойства переводят векторы ВАС в разряд сверхъемких векторов нового поколения. [c.94]

    Конструирование MA методом снизу вверх . При этом подходе искусственную минихромосому собирают из отдельных последовательностей, соответствующих теломерам, центромерам и областям начала репликации природных хромосом, с которыми объединяют требуемую рекомбинантную ДНК. Теломерные последовательности животных представляют собой тандем-но повторяющиеся последовательности вида (TTAGGG) , которые, будучи объединенными в повторы длиной 1 т.п.о., эффективно функционируют в клетках человека. В качестве областей начала репликации могут быть использованы различные последовательности, среди которых наиболее изучены соответствующие последовательности -глобинового гена человека. [c.99]

    Регуляторные части генов, а также продукты их экспрессии, мРНК и белки, распознаются соответствующими ферментными системами организма и обеспечивают упорядоченную экспрессию структурной части гена. При этом регуляторные участки генов и промежуточных продуктов их экспрессии, как правило, высокоспецифичны в отношении своих природных генетических эффекторов (РНК-полимераз, рибосом, факторов транскрипции и трансляции, белковых факторов сплайсинга, ферментов, осуществляющих посттрансляционные модификации полипептидов, и т.п.), и чаще всего они не могут эффективно функционировать в гетерологичном генетическом окружении. Очевидно, что при конструировании высокоэффективных экспрессирующих векторов необходимо, прежде всего, учитывать особенности структуры регуляторной части рекомбинантного гена, исходя из того, в каких генетических условиях клонированный ген будет экспрессироваться. Однако не только регуляторные последовательности генов являются препятствием для высокоэффективной экспрессии чужеродных рекомбинантных генов. Как уже было отмечено, структурные части генов про- и эукариот фундаментально отличаются друг от друга по наличию у последних внутри генов интронов. Следовательно, гены эукариот не могут эффективно экспрессироваться в бактериальных клетках, поскольку у прокариот отсутствуют соответствующие системы сплайсинга. Кроме того, у предшественников эукариотических мРНК не может осуществиться в бактериальных клетках и правильный процессинг 3 - и 5 -концевых некодирующих последовательностей. Даже такой [c.106]

    Все основные принципы, используемые при конструировании бактериальных векторов, применимы и для получения векторов эукариотических клеток. Как и в случае бактерий, эукариотический вектор представляет собой небольшую молекулу ДНК, способную автономно реплицироваться в клетках животных или растений. Помимо последовательностей нуклеотидов, обеспечи-ваюпдих репликацию, эукариотические векторы могут содержать гены, используемые в качестве селектируемых маркеров, а также один или несколько уникальных сайтов рестрикции, по которым производится встраивание клонируемых последовательностей нуклеотидов ДНК. Поскольку непосредственное клонирование рекомбинантных ДНК в клетках животных или растений было бы дорогостоящей и малоэффективной процедурой, эукариотические векторы используют, как правило, для получения экспрессии уже клонированных последовательностей нуклеотидов в клетках высших эукариот, а сам процесс клонирования проводят в бактериях. Следовательно, эукариотические векторы, помимо всего прочего, должны быть челночными векторами. Для экспрессии в клетках рекомбинантные ДНК помещают под контроль регуляторных элементов, узнаваемых и используемых ферментативными системами эукариотических клеток. [c.133]

    Получение временной экспрессии генов в клетках OS часто используется для быстрой наработки рекомбинантных белков и ДНК. При конструировании клеток OS клетки зеленой мартышки V-1 были трансформированы вирусом SV40 с дефектной областью начала репликации. В результате были получены три линии клеток ( 0S-1, 2 и 7), конститутивно экспрессирующих большой Т-антиген вируса. После проведения трансфекции клеток экспрессирующими плазмидами, содержащими область начала репликации вируса SV40, последняя эффективно взаимодействует с эн- [c.180]

    Среди искусственных систем биосинтеза белка важное место занимают бесклеточные системы [260]. Любая бесклеточная система создается, прежде всего, для моделирования конкретных биохимических процессов, происходящих в живом организме, и во время функционирования воспроизводит некоторые существенные особенности жизнедеятельности клетки. В генной инженерии бесклеточные белоксинтезирующие системы часто используются для исследования кодирующего потенциала и механизмов экспрессии клонированных генов in vitro, а также на промежуточных этапах конструирования рекомбинантных генов для идентификации мРНК или фрагментов ДНК по кодируемым белкам. [c.185]


Смотреть страницы где упоминается термин Геном рекомбинантные конструирование: [c.110]    [c.126]    [c.144]    [c.301]    [c.211]    [c.291]    [c.964]    [c.291]    [c.193]    [c.210]    [c.280]    [c.163]    [c.171]    [c.81]    [c.96]    [c.97]    [c.107]    [c.112]    [c.113]    [c.139]    [c.295]    [c.416]   
Генетика вирусов гриппа (1986) -- [ c.168 ]

Генетика вирусов гриппа (1986) -- [ c.168 ]




ПОИСК





Смотрите так же термины и статьи:

Геномы, конструирование

Конструирование



© 2024 chem21.info Реклама на сайте