Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Степень разветвленности

    Способность индивидуальных углеводородов кристаллизоваться, а также их температура кристаллизации (или плавления) зависят от строения молекул, в частности, от их симметричности и степени разветвленности входящих в них радикалов. [c.40]

    Работа этим способом проводится с неподвижным железным катализатором п с отводом тепла реакции через вмонтированный внутрь печи охладитель. Поддержание необходимой температуры регулируется давлением пара в охлаждающем агрегате. Выход продукта составляет 185 г на 1 смеси СО/Нг, включая фракцию Сз. Это соответствует выходу около 90% от теоретического. Здесь также содержание олефинов исключительно высокое и (что особенно важно при использовании их в химическом направлении) олефины очень равномерно распределены но всем фракциям. Их содержится около 75% во фракции Сд и 62% во фракции С . В среднем у 70% олефинов двойная связь находится у конца молекулы. Степень разветвленности углеводородной смеси, кипящей в интервале кипения среднего масла, составляет около 25%. [c.32]


    Степень разветвленности более легких продуктов невелика, но растет с ростом молекулярного веса. Углеводороды в интервале кипения среднего масла в среднем содержат 25% углеводородов изостроения. [c.128]

    У более разветвленных углеводородов образуется меньше продуктов расщепления, чем у неразветвленных. Другими словами, соотношение продуктов, полученных путем прямого замещения, к продуктам, образованным путем расщепления, с увеличением степени разветвления становится благоприятнее. [c.299]

    ДС аренов, в отличие ог других классов углеводородов,не понижается, а наоборот, несколько повышается с увеличением числа углеродных атомов. Их ДС улучшается при уменьшении степени разветвленности и симметричности ее расположения, а также наличии двойных связей в алкильных группах. [c.106]

    Кроме того, причиной, осложняющей закономерно возрастающую метанизацию нефтей в зоне катагенеза с возрастанием глубины и температуры, является особенность структур УВ нефтей разных генетических типов. Нами были изучены нефти, залегающие на глубинах более 4 км, из 140 скважин из отложений плиоцена, эоцена, юры и девона месторождений Предкавказья, Азербайджана, Прикаспийской впадины и Белоруссии. Состав исследованных нефтей и конденсатов приведен в табл. 46, а его изменения показаны на рис. 24. Для глубокозалегающих нефтей характерно высокое содержание бензинов и парафино-нафтеновых УВ в отбензиненной нефти. Последние имеют низкую степень циклизации молекул и высокое содержание СН -групп в парафиновых цепях. Структура парафиновых цепей в парафино-нафтеновой фракции (соотношение количества СНг-групп в коротких и в длинных цепях, степень разветвленности цепей) с ужесточением термобарических условий меняется по-разному (рис. 25). В нефтях первой группы наблюдается сокращение доли длинных цепей и возрастание доли коротких, что может быть связано с деструкцией парафиновых цепей. Это ведет к увеличению содержания легких и газообразных УВ и образованию газоконденсатных залежей. Во второй группе нефтей с погружением возрастает относительная роль [c.139]

    Серная кислота тем отличается от галоидных солей алюминия, что она не требует внесения извне инициатора цепи для проведения изомеризации. Инициирующий ион образуется при окислении части углеводорода самой кислотой. Она является более слабым катализатором в том отношении, что не способна вызывать изомеризацию углеводородов, не содержащих третичного атома водорода. Кроме того, она вызывает главным образом изомеризацию, связанную с миграцией метильных групп, не изменяя степени разветвленности углеродного скелета. С этим, несомненно, связано то явление, что, в противоположность галоидным солям алюминия как катализаторам серная кислота вызывает изомеризацию менее разветвленных высших парафинов вполне избирательно, поэтому нет необходимости добавки веществ, подавляющих реакцию крекинга. [c.39]


    Для полной характеристики отдельного образца полиэтилена требуется определить минимум три параметра средний молекулярный вес, степень разветвления цепи и распределение разветвления длины цепей. [c.171]

    Одной из слабых сторон этого механизма является чрезвычайна сильное разветвление структуры (так называемая щетка ) боковых цепей на разветвлениях, что должно бы иметь место, если бы такое разветвление происходило случайно. Ученые, изучающие полимеры, не в состоянии связать такую структуру с известными свойствами полиэтилена. Вторая слабая сторона этого механизма состоит в том, что в этом случае степень разветвления должна была бы очень сильно зависеть от концентра- [c.172]

    Первые работы по изучению степени разветвленности продуктов синтеза Фишера—Транша был проведены Вебером [48], основывавшимся на измерениях молекулярного веса и температур кипения фракций бензина. Он показал, что в смеси углеводородов Се—Сю на каждые 25—50 углеродных атомов приходится один третичный атом углерода. Присутствие четвертичных атомов углерода не было обнаружено. Стоградусную фракцию продуктов синтеза под нормальным давлением изучали Кох И Гильберат. Насышенная часть фракции С4 содержала 7,5% изобутана. Во фракции С5 найдены метилбутан и во фракции Се метилпентаны. Четвертичных атомов не обнаружено. [c.102]

    В качестве примера можно привести перевод н-бутана в изобутан, представляющий интерес как с научной, так и с промышленной точки зрения. Промышленное значение изомериэации бутапа состоит в том, что изобутан, имеющий третичный атом водорода, под влиянием катализаторов в мягких условиях может вступать в реакцию с олефинами и давать смеси парафиновых углеводородов высокой степени разветвления. Последние имеют большие октановые числа и играют важную роль как компоненты моторных топлив, обладающих антидетонационными свойствами. [c.512]

    Брунер исследовал бензин Хайдрокол-процесса масс-спектрометрн-ческим методом. Он показал, что степень разветвленности углеводоро-ДО В растет с увеличением молекулярного веса и что содержание изосое-линений много выше, чем при синтезе над кобальтовым катализатором. 3)то обстоятельство представляет существенный интерес с точки зрения последующего использования продуктов синтеза. [c.122]

    Гексаны. Три из пяти изомеров гексана изомеризуются в прису>-ствии серной кислоты, тогда как н-гексан и 2,2-диметилбутан не изив-няются. Между 2- и 3-метилпентанами быстро устанавливается равновесие. Энергетический барьер между этой парой изомеров и 2,3-диметил-бутаном, который представляет более высокую степень разветвленности, достаточно велик, чтобы препятствовать образованию сколько-нибудь значительных количеств последнего за сравнительно короткий промежуток времени. Направления реакции показаны на схеме 2. [c.35]

    Степень разветвленности углеводородов, получаемых синтезом над железным (псевдоожиженным) катализатором. (По данным Брунера.) [63] [c.123]

    На этом свойстве основано [83] объемное определение степени разветвленности парафиновых углеводородов. При этом методе треххлористую сурьму, обр азова вшую ся и результате иэбирагельного хлор И рова-НИ5Г третичных атомов водорода, титруют броматом калия в присутствии бром-иона и метилоранжа. [c.184]

    Легче всего и почти без побочных реакций сульфохлорируются насыщенные алифатические углеводороды нормального строения. У этих углеводородов хлорирование и в углеродной цепи протекает незначительно и при достаточно сильном источнике света составляет лишь несколько процентов. Менее выгодное со-отношение получается при сульфохлорировании изопарафина. При их сульфохлорировании всегда наблюдается ясно выраженное повышенное хлорирование в углеродной цепи. Причина этого заключается в том, что третичные атомы водорода, к к это в дальнейшем будет показано деталынее, не сульфохлорируются, в то время как при хлорировании они, как известно, реагируют легче всего. Чем выше степень разветвленности, тем менее благоприятно протекает реакция с этими углеводородами. [c.373]

    Изомеризацию одного гексана на практике не проводят, а всегда перерабатывают смеси пентана и гексана. Наиболее важным методом является так называемый процесс Изомэйт [35], при помощи которого н-пентан и гексаны с низким октановым числом переводят в изопентан и в более высокооктановые гексаны. Процесс разработан так, что в одной колонне выделяют изопентан, а в другой смесь неогексана и диизопропила. н-Пентан, метилпентаны с меньшей степенью разветвления и н-гексан возвращают в цикл. Ниже процесс Изомэйт будет описан подробнее. [c.525]

    При полимеризации пропилена в присутствии хлористого алюминия [70] (70 °С, нитрометановый раствор) получаются продукты с более высокой средней степенью полимеризации, чем при реакции в присутствии фосфорной кислоты. Число атомов С у этих продуктов, более 24 и степень разветвления больше. Образующийся при этолг тример идентифицирован как З-изопропилгексен-2  [c.247]


    ДС изопарафинов значительно выше, чем у алканов нор — мальЕюго строения. Увеличение степени разветвленности молекулы, [компактное и симметричное расположение метильных групп и приближение их к цеЕЕтру молекулы способствует повышению ДС изопарафинов. [c.106]

    Каталитическому риформингу принадлежит ведущая роль в производстве базовых бензи1юв. В зависимости от состава газоконденсата и параметров технологического процесса можно получить бензин риформинга с октановым числом от 72 до 85 по моторному методу. Бензины риформинга содержат в своем составе ароматические углеводороды, иепревращенные высококипящие парафины, незначительное количество нафтенов и легкие парафиновые углеводороды различной степени разветвленности. [c.218]

    В нефтях II генотипа (силурийско-нижнедевонские отложения) моноциклические нафтены преобладают над биоциклическими, отмечается низкое 2С(16 %) и очень низкая степень разветвленности парафиновых цепей. [c.45]

    Для нефтей III генотипа (среднедевонско-нижнефранские отложения) характерно равное содержание моно- и бициклических нафтенов, значительное преобладание бициклических над трициклическими нафтенами, высокая степень разветвленности парафиновых цепей, специфический [c.45]

    Нефти IV генотипа (верхнедевоиско-нижнекаменноугольные отложения, верхнефранско-турнейский комплекс) отличаются от нефтей других генотипов специфической структурой парафиновых цепей очень высоким содержанием Hj-rpynn в длинных цепях, преобладанием СНг-групп над Hj-группами, низкой степенью разветвленности парафиновых цепей, низким содержанием ванадиевых порфиринов. Коэффициент Ц повышен. [c.53]

    В нефтях II ("каменноугольного") генотипа также преобладают СН2-группы в длинных цепях (24—43 %, среднее 35 %), но в меньшей мере, чем в девонском генотипе. Нефти II генотипа также легкие, с высоким содержанием бензиновых фракций. Смолисто-асфальтеновых компонентов больше, чем в девонском генотипе. В бензиновых фракциях преобладают нафтеновые УВ. В отбензиненной части нефти степень циклизации их выше по сравнению с нефтями девонского генотипа. Структура парафиновых цепей несколько отличается от таковой в нефтях "девонского" генотипа — отмечается снижение роли СН2-групп относительно СНз-групп и возрастание степени разветвленности, больше СНз-групп в гемдиме-тильном положении. Значительно возрастает процент нафтеновых циклов в усредненной молекуле парафино-нафтеновых УВ (с 17 % в девонских нефтях до 29 % в каменноугольных). Среди аренов полициклических УВ не обнаружено. Состав малоциклических ароматических УВ несколько отличается от состава аренов девонских нефтей преобладанием нафталиновых ядер над фенантреновыми, более высоким содержанием бензольных ядер. Характерная особенность нефтей II генотипа - наиболее высокое суммарное содержание ароматических ядер (около 39 %). [c.70]

    Структура парафиновых цепей значительно отличается от структуры нефтей описанных выше генотипов низкой степенью разветвленности и повышенной ролью Hj-rpynn относительно СНз-групп. Содержание нафтеновых циклов более низкое, чем в нефтях каменноугольного генотипа. [c.71]

    Для нефтей IV ("триасового") генотипа характерно снижение роли длинных цепей. Типичны для триасовых отложений нефти с коэффициентом Ц 2,45—4,12. Это в основном нефти средней плотности. Их особенностью является низкое содержание как бензиновых фракций, так и смолисто-асфальтеновых компонентов. Среднее число колец в молекуле парафино-нафтеновой фракции выше, чем в описанных ранее нефтях, а в нафтено-ароматической фракции — ниже. Данные ИКС показывают, что в парафино-нафтеновой фракции значительно возрос процент нафтеновых циклов. Для парафиновых структур характерно резкое (в 3 раза) увеличение содержания СНг-групп по сравнению с СНз-группами и уменьшение роли СНз-групп в гемдиметильном положении, что указывает на снижение степени разветвленности парафиновых структур. Для нефтей "триасового" генотипа характерно самое низкое содержание малоциклических ароматических УВ (около 25 %) за счет главным образом небольшого процента нафталиновых и фенантреновых ядер, сумма которых меньше содержания бензольных ядер. Это— главная отличительная особенность нефтей "триасового" генотипа (более 56 % фракций малоциклических аренов составляют бензольные ядра). Полициклические ароматические УВ не обнаружены. Присутствуют лишь следы как ванадиевых, так и никелевых порфиринов. Нефти "триасового" генотипа встречены в триасовых отложениях в районе Джамбейтинско-Хобдинской зоны прогибания, выделяются также по параметру Ц в юрских отложениях на всех [c.71]

    Судя по коэффициентам Pj и Pj, парафиновые структуры мезозойских нефтей характеризуются большей степенью разветвленности по сравнению с палеозойскими. Об этом свидетельствует тенденция к возрастанию суммарного содержания СНз-групп в метильных разветвлениях и гемдиметильных группировках и особенно резкое возрастание роли СНз-групп в метильных разветвлениях цепи по сравнению с гемдиметиль-ными группировками. [c.98]

    Генетические типы нефтей нефтегазоносных провинций, связанных с платформенными областями, в частности с Восточно-Европейской платформой, характеризуются определенными особенностями. Если взять одноименные стратиграфические комплексы, например среднедевонские отложения Тимано-Печорской, Волго-Уральской НГП и Припятского прогиба, то коэффициент Ц в нефтях этих отложений изменяется от 7,3 до 12 в первых двух и до 22 в третьем. Наблюдаются различия в суммарном содержании СНг-групп в нефтях Тимано-Печорской НГП 29 %, Волго-Уральской НГП 46,6 %. Первые нефти имеют, кроме того, большую степень разветвленности парафиновых цепей. Однако имеются и общие признаки генотипов нефтей, залегающих в девонских отложениях, — генетические показатели, отражающие структуру нафтеновых УВ соотношение моно- и бициклических, би- и трициклических нафтенов, содержание тетра-, пента- и гексациклических нафтенов в нефтях средневерхнедевонского генотипа в двух сравниваемых провинциях близки, так же как и средние значения g/ и С /Сф. Близко и содержание ванадиевых порфиринов. [c.101]

    Изменения доли СНз-групп, так же как и доли СНа-групп, восьма несущественны с тенденцией уменьшения в фильтратах. По сравнению с исходной нефтью, где ХСНа составляет 23,54 %, в фильтрате, прошедшем через известняк при 40 °С, отмечается максимальное уменьшение 2СНз-групп (22,28 %). Величины отношения ХСНа/ СНз также близки в исходной нефти и в фильтратах с некоторой тенденцией к увеличению (с 1,69 до 1,80) в единичных образцах. Структурные особенности парафиновых цепей, определяемые местоположением СНз-групп (изолированные, геминальные, метильные разветвления, изопропильные и т. д.), при фильтрации через породы меняются незначительно. В фильтрованных неф-тпх отмечается тенденция к сокращению доли парафиновых УВ с СНз-группами в изолированном положении, главным образом в метильных разветвлениях. В некоторых опытах содержание СНз-групп в метильных разветвлениях в фильтратах нефти сокращается до 5 % (в исходной 6,77 %). Степень разветвленности (коэффициенты Р1 и Рг) в фильтратах по сравнению с исходной нефтью имеет тенденцию к уменьшению. Особенно четко это прослеживается по Рг, который уменьшается от 1,63 в исходной нефти до 0,41 в нефти, фильтрованной через известняк. [c.119]

    В итоге можно отметить, что при фильтрации нефтей через терриген-ные породы структура парафиновых цепей меняется мало. Отмечается лишь тенденция к уменьшению в фильтрате доли длинных цепей, возрастанию роли коротких, уменьшению степени разветвленности. Вместе с тем абсолютные значения изменения параметров очень небольшие, что нашло отражение в малой изменчивости коэффициентов Ц и Р1. [c.119]

    Степень разветвления оказывает влияние на количество парафиновых углеводородов. Из разветвленных октанов монометилгептаны встречаются в больших количествах, чем диметилгексаны, которые в свою очередь встречаются в большем количестве, чем триметилпентаны. [c.22]

    Мюллер и Пилат [23] выделяли твердый парафин из тянтелого остатка бориславской нефти, фракции которой имеют также недостаточно водорода, что указывает на присутствие циклических или нафтеновых замещающих групп. Саханен указал на то, что физические свойства этих фракций согласуются со свойствами фракций парафина из сураханской нефти соответствующих молекулярных весов (изопарафины) температура плавления их ниже, а удельные веса намного больше. Эти отклонения могут быть объяснены более высокой степенью разветвленности, по недостаточное содержание водорода с определенностью указывает на присутствие циклических групп. [c.47]

    НИЯ, весьма сложен. В связи с этим существует разрьш между нашими представлениями о свойствах тяжелых углеводородных модельных веществ и тем, что мы знаем о свойствах тяжелых углеводородов нефти в общем наши знания об углеводородах молекулярного веса от 300—1000 довольно ограничены. Каждый, кто применяет для анализа высокомолекулярных продуктов методы, основанные на свойствах синтетических углеводородов, должен быть знаком с этим фактом. Для восполнения пробела необходима большая работа, так как недостаток данных по индивидуальным компонентам становится серьезной помехой при изучении высококипящих нефтяных фракций. Если метод структурно-группового анализа применяется для изучения структурных элементов, которые не могут быть точро определены в нефтяных фракциях, например степень разветвления, то единственно возможным путем является изучение синтетических углеводородов. В этих случаях требуется большое число данных не только о самих чистых веществах, но также и об их смесях. Несмотря на то, что число данных все время увеличивается, как правило, не имеется достаточного экспериментального материала по высокомолекулярным соединениям. [c.369]

    Уотерман и Линдертсе 1(31] в 1У38 г. нашли, что удельный парахор, представляющий собой функцию молекулярного веса, поверхностного натяжения и плотности, зависят от степени разветвления. Применение этого параметра, однако, ограничивается чистыми углеводородами и сравнительно простыми смесями. [c.372]

    Другие жтоды, включатцие определение степени разветвления. В 1952 г. Роберт [34], пытаясь исключить определение молекулярного веса, установил линейное соотношение между процентным содержанием углерода в ароматической структуре (% Сд), коэффициентом преломления п , плотностью d и анилиновой точкой АР. Это соотношение имеет вид  [c.385]

    Ван-Нес и Ван-Вестен [50] дали обзор методов определения степени разветвления, используя парахор, а также магнитооптическое вращение (постоянная Верде). Ввиду того, что до настоящего времени эти методы еще не получили достаточного развития, до сих пор нет надежного метода для анализа степени разветвления, более подробно эти методы рассматриваться не будут. [c.386]

    Значительно более обещающими являются методы анализа степени разветвления, основанные на спектроскопических данных по инфракрасному поглощению. После работы Фокса и Мартина [62], приписавших связи СН валентные колебанпя, а также после систематических наблюдений Розе [131 на большом ряде модельных веществ различные исследователи [12, 16, 18, 23] пытались использовать эти данные для количественного определения в углеводородах групп СН3, СНд, СН (алифатических) и СН (аромати ю-ских). Из этих наблюдений могут быть сделаны интересные выводы о стспени разветвления парафинов и степени замещения ароматических угловодородов.  [c.386]

    При исследовании нефти широкое распространение получили некоторые методы. Для достижения соответствующего разделения необходимо, чтобы, с одной стороны, составляющие одной группы в процессе разделения вели себя совершенно одинаково, а с другой стороны, чтобы полученные фракции обладали одинаковыми свойствами. Ввиду того, что выполнимость первого условия ограничена, второе условие не может быть выполнено достаточно строго. Например, в настоящее время с трудом можно разделить молекулы, слабо отличающиеся по степени замещения колец или по степени разветвления в боковых цепях. Почти все существующие методы разделения по типам требуют значительного различия молекул или по поляризуемости, или по форме. В настоящее время компоненты нефти могут быть классифи-цировавы следующим образом [c.388]

    Скорость образования углеродной ]депи данной длины можно приравнять к скорости ее исчезновения за счет роста или десорбции. Тогда при дальнейшем росте цепи, состоящей из п атомов углерода, можно гшразить отношение числа молей образоваишенся цепи (Ф 1) к числу молей предшествующего члена ряда (Ф ) черс г Ф /Фn = a (присоединение к конечному атому углерода) и Ф 1/Фп = b-=af (присоединение к смежному с ) онеч-ным) а, Ъ п / — константы, причем / = bja —индекс, характеризующий степень разветвления. В табл. 1 приведен расчет относительного рас-нред( лепия но изомерному составу и углеродному числу некоторых членов уг. геводородного ряда при количестве фракции С3, равном единице. В табл, 2 дано сравнение рассчитанного (/ = 0,115) и эксперимен-талыю найденного распределения изомеров в углеводородной части продукта, полученного при синтезе над железным катализатором в псевдоожиженном слое [6], Согласие данных следует признать удовлетворительным, осли учесть принятые для расчета упрощающие предположения. [c.523]

    Для изомерных углеводородов скорость окисления уменьшается с возрастанием степени разветвленности. Куллис и Гиншельвуд установили, что / -гексан окисляется, примерно, в 1580 раз быстрее, чем 2,3-диметилбутан [15]. [c.319]

    Другой тип изомеризации, протекающий в ограниченной степени и гораздо более медленно, чем первый, приводит к изменению степени разветвленности. Так, например, в системе, состоящей из метилпентана, образовалось небольшое количество 2,3-диметилбутана, а в смеси, состоящей из диметилпентанов, наблюдалось медленное образование 2- и 3-метил гексанов [67]. Превращение такого типа включает обратимую миграцию метильной группы, которая или с самого начала является, или становится в результате миграции одним из заместителей у вторичного атома углерода. Необходимо, кроме того, чтобы каждая участвующая в реакции молекула обладала третичным атомом углерода в исходной и в конечной изомерной форме. [c.34]

    Каждая,из трех горизонтальных строк на схеме 3 представляет различную степень разветвления. Превращения между соединениями, указанными в разных строчках, происходят медленно, и количество изомеров, получающихся в результате этих превращений, мало. Между 2- и 3-метилгексанами и 2,3- я 2,4-диметилпентанами, напротив, довольно быстро устанавливается равновесие. Как и прежде, числа у стрелок указывают константы скорости, выраженные величинами, обратными часам, при 25° и с использованием 99,8%-но11 серной кислоты [67]. Косвенные данные, основанные на изучении реакции водородного обмена [75], указывают на аналогию с реакцией 2,2,3-триметилбутана, при которой происходит очень быстрый переход метильной группы от одного из двух центральных атомов углерода к другому, в результате чего получается продукт, который нельзя отличить от исходного вещества обычными методами (сравни выше изопентан). [c.36]


Смотреть страницы где упоминается термин Степень разветвленности: [c.123]    [c.70]    [c.72]    [c.141]    [c.501]    [c.523]    [c.34]    [c.37]   
Высокомолекулярные соединения (1981) -- [ c.275 , c.284 , c.620 ]

Структура и прочность полимеров Издание третье (1978) -- [ c.56 , c.58 ]

Механохимия высокомолекулярных соединений (1971) -- [ c.86 ]

Химия высокомолекулярных соединений Издание 2 (1966) -- [ c.221 ]

Получение и свойства поливинилхлорида (1968) -- [ c.23 , c.181 , c.183 , c.402 ]

Введение в химию высокомолекулярных соединений (1960) -- [ c.90 , c.186 , c.188 ]

Кристаллические полиолефины Том 2 (1970) -- [ c.26 ]

Инфракрасная спектроскопия полимеров (1976) -- [ c.173 ]

Высокомолекулярные соединения Издание 2 (1971) -- [ c.191 , c.199 , c.476 ]

Высокомолекулярные соединения Издание 3 (1981) -- [ c.275 , c.284 , c.620 ]




ПОИСК





Смотрите так же термины и статьи:

Разветвление

Разветвленность



© 2025 chem21.info Реклама на сайте