Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллическая структура углеводородов

    Селективная способность — одно из наиболее замечательных свойств цеолитов. В отличие от обычных катализаторов, цеолиты имеют два типа пор одни определяются размерами пор кристалла цеолита, другие — внутрикристаллической системой, существующей и в промышленных катализаторах крекинга. В зависимости от кристаллической структуры и формы пор цеолиты обеспечивают высокую селективность (избирательность) каталитического крекинга. Например, цеолиты с маленькими порами (4 и 5 А для типа А) эффективны в реакциях, в которых участвуют реагенты с небольшими размерами молекул такие цеолиты избирательно действуют только на пропилен, если, например, он находится в смеси с изобутиленом. При селективном крекинге смеси парафиновых углеводородов на цеолитах, размер пор которых ненамного превышает 5 А, крекинг изопарафинов незначителен. При каталитическом крекинге с использованием цеолитов типа X и У, диаметр пор которых от 9 до 10 А, углеводородные молекулы частично крекируются на внешней поверхности кристалла цеолита, а образующиеся фрагменты подвергаются дальнейшему крекингу внутри полостей. [c.101]


    Кристаллическая структура твердых углеводородов имеет весьма важное значение в процессах депарафинизации и обезмасливания, поскольку форма и размеры кристаллов преимущественно предопределяют скорость и полноту разделения фаз и, следовательно, производительность фильтровальных аппаратов. [c.253]

    Кристаллическая структура входящих в состав нефтяных фракций твердых углеводородов имеет весьма важное значение нри процессах депарафинизации, поскольку эти процессы в большинстве основаны на отделении теми или иными способами выкристаллизовавшихся твердых углеводородов от низкозастывающих компонентов или от их растворов в различных растворителях. [c.59]

    В области 720 см обнаруживается зависимость формы и интенсивности поглощения от кристаллической структуры углеводородов при изменении температуры съемки. При 20°С наблюдается двойная полоса в области 720—730 см . Для парафина с повышением температуры съемки интенсивность полосы 730 см уменьшается, а затем фиксируется одна полоса при 720 см" . Исчезновение поглощения при 730 см свидетельствует о переходе ромбической структуры в гексагональную. Появление ромбической структуры отмечается при температуре на 12—15° ниже температуры плавления углеводородов (рис. 28). [c.30]

    Подобное непонимание роли принципа плотной упаковки в органической кристаллохимии было обусловлено прежде всего невозможностью определения методом рентгеноструктурного анализа положения атомов водорода. И до сих пор ряд исследователей, описывая, например, кристаллические структуры углеводородов, показывают на чертежах расположение только атомов углерода, характеризуют упаковку молекул расстояниями между атомами углерода, вне зависимости от того, четвертичные ли они или входят в группы СН, или СНа, или СНз- Нетрудно видеть, что при таком анализе структуры действительно может создаться впечатление пе только об отсутствии каких-либо закономерностей в отношении межмолекулярных расстояний, но и о неприменимости принципа плотной упаковки к органиче- [c.83]

    Рассматривая решетки нормальных парафиновых углеводородов и их производных, целесообразно прежде всего абстрагироваться от влияния на строение кристалла конечной длины цепи. Поэтому прежде всего опишем кристаллическую структуру углеводородов с числом атомов углерода выше 100. Было показано, что рентгенограммы поликристаллов таких углеводородов имеют одинаковый вид вне зависимости от числа атомов С. Это и показывает, что структура может рассматриваться как упаковка бесконечно длинных цепей. Кристаллы таких углеводородов обладают ромбической ячейкой с параметрами а = 7,40, Ь = 4,93 и с = 2,534 А, причем на ячейку приходятся четыре группы СНз (через ячейку проходят две цепи, от каждой цепи на ячейку приходятся две группы СНз). [c.220]


    Низкая растворимость твердых углеводородов объясняется тем, что они, имея трехмерную упорядоченную струк — гуру, обладают высоким уровнем энергии связи между молекулами. Введение в сис — тему растворителя, хотя и ослабляет межмолекулярное взаимодей — ствие, но оно, особенно при низких температурах, может оказаться недостаточным для полного разрушения кристаллической структуры и перевода твердых углеводородов в раствор. [c.221]

    Кристаллическая структура твердых углеводородов (парафинов) [c.59]

    Выделение твердых углеводородов, находящихся в таком мелкокристаллическом состоянии, из остаточных продуктов при их депарафинизации было бы крайне затруднительным, если бы в этих продуктах не содержались также и некоторые активные вещества, природа которых остается пока малоизученной. Эти вещества оказывают влияние на общую кристаллическую структуру твердых углеводородов и способствуют соединению отдельных мелких кристалликов в относительно крупные и более или менее компактные агрегаты (наподобие коагуляции коллоидных систем). Соединение кристалликов в агрегаты значительно облегчает отделение мелкокристаллических углеводородов от жидких компонентов или их растворов и делает возможной депарафинизацию последних. [c.32]

    Другой причиной зависимости кристаллической структуры остаточных продуктов от природы исходной нефти является наличие в них активных веществ, вызывающих агрегацию кристалликов твердых углеводородов. Эти активные вещества относятся, но-видимому, к категории высокомолекулярных высококипящих соединений, поскольку при перегонке нефти они не переходят в дистиллят, а сосредоточиваются в остатке. В нефтях эти активные вещества могут содержаться в различных количествах, и их природа, а также и активность тоже могут быть различными, что и сказывается на кристаллической структуре твердых углеводородов, находящихся в остаточных продуктах различных нефтей. [c.33]

    Качество сырья. На качество продуктов термолиза наиболее сущотвенное влияние оказывает групповой углеводородный состав сырья, прежде всего содержание полициклических ароматических углеводородов. Групповой состав ТНО определяет свойства как дисперсионной среды, так и дисперсной фазы, а также агрегативную устойчивость сырья в условиях термолиза. При термолизе таких видов сырья образовавшиеся асфальтены более длительное время находятся в объеме без осаждения в отдельную фазу и претерпевают более глубокие химические превращения (обрыв боковых цепочек, 0брс130вание крупных блоков поликонденсированных ароматических структур и т.д.). В результате образуются более упорядоченные карбоиды и кокс с лучшей кристаллической структурой. [c.41]

    Кроме того, при деасфальтизации и очистке, особенно очистке избирательными растворителями, можно в значительной мере удалить из остаточных продуктов активные вещества, влияющие на кристаллическую структуру твердых углеводородов. Это тоже способствует изменению кристаллической структуры остаточных продуктов при их деасфальтизации и очистке. [c.34]

    Весьма активными депрессаторами являются продукты окисления твердых нефтяных углеводородов — парафина и особенно петролатума. Использовать окисленный петролатум в качестве депрессатора, а также добавки, изменяющие кристаллическую-структуру депарафинируемых растворов, впервые предложил Н. И. Черножуков, и окисленный петролатум успешно применяли одно время в промышленных условиях. [c.73]

    Как показали наши дальнейшие исследования совместно-с Н. И Черножуковым, окисленный петролатум действует на кристаллическую структуру парафинистых продуктов двояко присутствующие в петролатуме неокислившиеся высокомолекулярные, мелкокристаллические твердые углеводороды вызывают измельчение структуры парафинов, находящихся в обрабатываемом парафинистом продукте активным же веществом, обусловливающим дендритную форму процесса кристаллизации, являются продукты окисления, которые представляют собой кислородсодержащие соединения с алкильными цепями. При отделении от окисленного петролатума неокислившихся твердых углеводородов, например, путем экстракции горячим бензином или жидким пропаном, которые очень слабо растворяют продукты окисления, нами получен весьма активный депрессатор, вызывающий дендритную кристаллизацию парафина без предварительного измельчения его структуры. [c.73]

    Исследования кристаллической структуры сплавов н-парафинов с нафтенами, имеющими длинные боковые цепи нормального строения, и этих же сплавов с добавлением твердых ароматических углеводородов, содержащих в молекуле прямые цепи, позволили [23] сделать ряд интересных выводов. Сплавы парафинов и нафтенов в отношении 1 1 имеют структуру, приближающуюся к парафиновой. Увеличение содержания нафтенов в сплаве придает кристаллам форму, типичную для нафтенов. При кристаллизации смеси н-парафиновых, нафтеновых и ароматических углеводородов с боковыми цепями нормального строения в отношении 1 1 0,5 образуется мелкокристаллическая структура, типичная для твердых ароматических углеводородов. Изучение сплавов различных групп твердых углеводородов, содержащихся в нефтяных фракциях, имеет большое теоретическое и практическое значение, так как характе(ризует направление технического иапользования нефтяных парафинов и церезинов. [c.128]


    ИК-спектроскопией адсорбированного аммиака и пиридина установлено усиление апротонной кислотности и образование центров протонной кислотности в результате хлорирования т -оксида алюминия четыреххлористым углеродом. Исследования масс-спектров продуктов десорбции с поверхности образцов -у- и tj-оксидов алюминия до и после хлорирования и электронная оптическая спектроскопия адсорбированных состояний некоторых оснований позволили установить, что причиной принципиальной разницы в каталитической активности хлорированных tj- и 7-оксидов алюминия в низкотемпературной изомеризации парафиновых углеводородов являются различия в свойствах поверхности прокаленных при 500 °С оксидов алюминия, в том числе в количестве и расположении гидроксильных групп, обусловленных особенностями кристаллической структуры 7 - и 7-оксидов алюминия [90]. Хлорирование поверхности оксида алюминия, сопровождающееся выделением хлороводорода и диоксида углерода, усиливает кислотность апротонного и протонного типа. Бренстедовская кислотность обусловлена хемосорбированнымНС . [c.72]

    Для получения масел с низкой температурой застывания в технологию их производства включен процесс депарафинизации, целью которого является удаление из масляного сырья твердых углеводородов. Под твердыми углеводородами подразумеваются все углеводороды, имеющие при комнатной температуре кристаллическое строение. Углеводороды этой группы при понижении температуры выкристаллизовываются из раствора в масле, образуя структурированную систему, связывающую жидкую фазу. Твердые углеводороды масляных фракций, так же как и жидкие, представляют собой многокомпонентную смесь (табл. 16) парафиновых углеводородов (от ie и выше), различающихся по структуре и числу атомов углерода в молекуле, твердых нафтеновых, содержащих 1—3 кольца в молекуле и имеющих длинные боковые цепи нормального и изостроения, а также твердых ароматических и нафтено-ароматических, различающихся по общему числу колец [c.116]

    Парафиновые углеводороды нормального строения относятся к изоморфным веществам, образующим при совместной кристаллизации твердые растворы. При понижении температуры в первую очередь выделяются кристаллы наиболее высокоплавких углеводородов, на кристаллической решетке которых последовательно кристаллизуются углеводороды с меньшей температурой плавления и меньшим числом атомов углерода в молекуле [6, 7]. Исследовать кристаллическую структуру твердых углеводородов масляных фракций нефти весьма сложно ввиду их многокомпонентно-сти. Даже кристаллическая структура нормальных парафинов — наиболее простых по строению компонентов установлена лишь в последнее время. [c.118]

    Структурное застывание нефтепродуктов, в частности, масел, вызывается образованием в них при охлаждении твердой фазы, частицы которой при достижении определенной концентрации связываются между собой и образуют кристаллическую структуру, иммобилизующую всю массу продукта. К таковым кристаллизую — Г1Т,имся компонентам сырья депарафинизации относятся твердые компоненты, обычно именуемые "твердыми парафинами" или "церезинами". Следует однако иметь в виду, что под термином "пара — сэины" в данном случае подразумеваются не только углеводороды ряда алканов, но и твердые кристаллические нафтеновые и ароматические углеводороды. Общим для них является их способность гыделяться в тех или иных кристаллических формах из раствора в нефтепродуктах при охлаждении. Следовательно, разные формы [c.250]

    При температурах выше температуры полиморфного перехода образуется гексагональная структура кристаллов, а кристаллизация при температурах ниже этой температуры приводит к образованию кристаллов парафина, имеющих орторомбическую форму. Кристаллы моноклинной и триклинной модификаций, характерные только для индивидуальных углеводородов, при кристаллизации нефтяных парафинов не образуются [И]. Температуру перехода одной модификации кристаллов в другую определяют рентгеноструктурным методом [12], методом ДТА [9, 13, 14], по ИК-спект-рам и показателю преломления [15, 16], по изменению формы кристаллов [17] и др. Для низкомолекулярных парафинов температура перехода одной кристаллической структуры в другую на десятки градусов ниже температуры плавления, в то время как для высокомолекулярных парафинов этот температурный интервал составляет всего 3—12°С l[10], а для некоторых вообще не обнаруживается. [c.122]

    Образование комплекса — экзотермический процесс. По данным [3], теплота комплексообразования, отнесенная к числу атомов углерода в молекуле нормального парафина, составляет около 6,7 кДж (1,6 ккал), что вдвое больше теплоты плавления этих углеводородов и значительно меньше теплоты их адсорбции на твердой поверхности. Отсюда следует, что тепловой эффект комплексообразования есть результат экзотермического процесса адсорбции и эндотермического процесса перехода тетрагональной структуры карбамида в гексагональную в момент комплексообразования. Теплота образования комплекса складывается из теплот трех процессов преодоления сил межмолекулярного сцепления молекул парафинового углеводорода, численно равных теплоте испарения ориентации молекул карбамида в отношении молекул парафиновых углеводородов (экзотермический процесс) превращения кристаллической структуры карбамида из тетрагональной в гексагональную (эндотермический процесс). [c.201]

    Реакционная способность углеродистых материалов зависит прежде всего от их молекулярной и кристаллической структуры, а затем от степени их пористости и содержания минеральных веществ [1, 2, 106, 212, 266]. По современным научным воззрениям, процесс сгорания углеводородов, углеродистых материалов и даже алмаза проходит в две стадии вначале разрываются все атомные связи, а затем каждый атом сгорает в отдельности. Это означает, что чем меньше требуется энергии на разрыв межатомных связей в молекуле данного соединения, тем больше его реакционная способность. [c.219]

    Кроме того, вследствие весьма мелкой кристаллической структуры твердых углеводородов этой категории, при которой размер их кристалликов приближается к размерам мицелл коллоидных растворов, приобретают большие значения величины относительной поверхности этих кристалликов, приходящихся на единицу их массы. Так, при размерах кристалликов 0,01 X 0,01 X X 0,0002 мм поверхность кристалликов на 1 г их массы составляет около 10 м . При такой величине относительной поверхности твердых углеводородов количество адсорбируемых ими из раствора при перекристаллизациях (а тем более при переоса-ждепиях) различных сопутствующих компонентов становится уже существенным, что еще более препятствует должной очистке остаточных твердых углеводородов и получению их в достаточно чистом виде. [c.52]

    Особенностью смесей твердых углеводородов, входящих в различные фракции нефти, иными словами — парафинов является наличие двух аллотропных форм, в которых парафины могут существовать в твердом состоянии. Отвечающие этим аллотропным формам модификации существенно отличаются друг от друга как по физическим свойствам, так и по кристаллической структуре. Одна из этих модификаций способна существовать при повышенных температурах вплоть до температуры плавления данного парафина, другая является устойчивой при пониженных температурах ниже некоторой вполне определенной для данного пapaфинa температуры перехода. [c.59]

    Поскольку масляное сырье представляет собой многокомпонентную смесь кристаллизующихся углеводородов, растворенных в кизкозастывающихся компонентах, при депарафинизации в основном будет иметь место совместная, то есть многокомпонентная, кристаллизация с образованием различных более сложных смешанных форм кристаллической структуры. При совместной кристаллизации из углеводородных сред в первую очередь выделяются кристаллы наиболее высокоплавких углеводородов, на кристалли — меской решетке которых последовательно кристаллизуются углеводороды с более низкими температурами плавления. При этом (рорма кристаллов остается ромбической, а их размер зависит от молекулярной массы и химической природы кристаллизующихся углеводородов. Так, с повышением молекулярной массы и температуры кипения н-алканов кристаллическая структура их становится все более мелкой. Обусловливается это тем, что с повышением молекулярной массы уменьшается подвижность молекул парафина. Это затрудняет их диффузию к ранее возникшим центрам кристаллизации и вызывает образование новых дополнительных кристал — Аических зародышей малых размеров. [c.254]

    Температура плавления кристаллизующихся углеводородов имеет тенденцию к повышению с увеличением молекулярного веса, усилением поляризуемости и симметричности молекул. Повышение температуры плавления с увеличением молекулярного веса закономерно для углеводородов одного гомологического ряда и однотипной структуры. Температура плавления кристаллизующихся углеводородов с молекулами различной структуры зависит в основном от строения молекул. Углеводороды с несимметричной, разветвленной структурой характеризуются низкой температурой кристаллизации, а в некоторых случаях вообще неспособны кристаллизоваться. Симметричность молекул и простота их строения способствуют образованию кристаллических структур и повышению температуры плавления углеводородов. Ван-Нес и Ван-Вестен [8] считают, что разветвление молекул оказывает решающее влияние на температуру плавления углеводородов, и отмечают общее правило, что наиболее симметричные молекулы имеют наиболее высокую температуру плавления. Это правило указанные авторы объясняют тем, что чем более симметрична молекула, тем больше имеется способов построить из нее кристаллическую решетку, что согласно статистическим положениям приводит к более высокой температуре плавления. Правило молекулярного веса, указывающее, что температура плавления углеводородов возрастает с их молекулярным весом, может быть подавлено правилом симметрии. [c.40]

    Различие в физических свойствах технического парафина и церезина обусловливается разницей размеров образующих их кристалликов и различным составом по температурам плавления. Относительно узкий состав технического парафина по температурам плавления, низкое содержание в нем масел, крупная кристаллическая структура составляюпщх его твердых углеводородов придают ему твердость и хрупкость (имеется в виду ниже температуры перехода). Пластичность же церезина обусловливается его / широким составом по температурам плавления и содержанием / существенных количеств высоковязких некристаллизующихся компонентов. [c.79]

    Так, технические парафины вырабатывают из дистиллятного сырья с началом кипения 300—350° и с ограниченным концом кипения, не превышающим для основных сортов товарных парафинов 450—475° и для высокоплавких сортов 500—510°. Это ограничивает молекулярный вес составляющих технические парафины углеводородов пределами от 250 до 450 и для высокоплавких сортов примерно до 500. Вследствие не очень высокого молекулярного веса составляюпще парафин углеводороды обладают относительно крупной кристаллической структурой, что позволяет достаточно полно их обезмасливать. В состав парафинов входят главным образом к-алканы, а также некоторое количество твердых углеводородов изостроения и циклических структур, обладающих длинными алкильными цепями. При этом основную массу технического парафина составляют и-алканы, а остальные углеводороды образуют меньшую долю его массы и по химическому строению представляют собой не очень сложные малораз-ветвленные структуры, близкие к к-алканам. Какие-либо высокомолекулярные конденсированные вещества в технических парафинах отсутствуют. [c.78]

    Церезины же вырабатывают из остаточных продуктов нефти с началом кипения не ниже 450—500°, а иногда и выше. В состав церезина входят все наиболее высококипяпще кристаллические углеводороды нефти молекулярного веса от 450—500 и выше. Вследствие высокого молекулярного веса входяпще в состав церезина твердые углеводороды обладают весьма мелкой кристаллической структурой, которая определяет в значительной мере их физические свойства, а также ограничивает возможность достижения высокой чистоты их при обезмасливании. По химической природе входящие в состав церезина углеводороды относятся к тем же гомологическим рядам и группам, к каким относятся углеводороды, составляющие парафин. Но разница заключается в том, что в церезины входят наиболее высококипящие и высокомолекулярные представители этих групп, в то время как члены этих групп, составляющие технический парафин, обладают средними температурами кипения и средними молекулярными весами. Различным является и соотношение количеств углеводородов разных групп, входящих в церезин и в технический парафин. Если в техническом парафине преобладают и-алканы, то в церезине и-алканы содержатся в значительно меньшем относительном количестве и обычно составляют меньшую долю его массы. [c.78]

    Рассмотренная выше разница в свойствах углеводородов, которые входят в технический парафин и в церезин, обусловливающая различие показателей качества этих продуктов, не позволяет, однако, провести объективную границу между этими углеводородами и не дает оснований выделять их в самостоятельные ряды или группы точно так же, как нет оснований выделять в самостоятельные ряды и группы углеводороды, составляюпще, например трансформаторное масло и авиамасло или какие-нибудь иные продукты, несмотря на значительную разницу в их составе и свойствах. Также не могут быть выделены в категорию церезиновых углеводородов те высокомолекулярные примеси, возможно, не относящиеся даже к кристаллическим веществам, которые, находясь в некотором количестве в церезине, придают составляющим его основную массу твердым углеводородам специфические дендритные формы кристаллической структуры. Поэтому деление твердых углеводородов на парафиновые и церезиновые нецелесообразно, лишено основания и в последующем изложении употребляться не будет. [c.80]

    Несмотря на большое разнообразие применяемых раствори-телеп , процессы депарафинизации этой группы по принципиальной техно.погической схеме весьма близки между собой и заключаются в следующем. Обрабатываемый продукт смешивают с растворителем и полученный раствор охлаждают с целью выкристаллизовывания находящихся в нем твердых углеводородов. Для улучшения кристаллической структуры охлажденного продукта растворитель можно добавлять к сырью не весь, а порциями в процессе охлаждения. От охлажденного раствора затем отделяют выкристаллизовавшуюся твердую фазу либо фильтрацией на вакуумных фильтрах непрерывного действия, либо центрифугированием на центрифугах непрерывного действия. После отделения твердой фазы получается раствор целевого депарафинированного масла. Растворители из продуктов депарафинизации удаляют перегонкой. [c.182]

    Н. И. Черножукова [24—26]. Эти исследования позволили установить, что углеводороды всех гомологических рядов при кристаллизации из растворов в неполярных растворителях, в том числе и в нефтяных фракциях, образуют кристаллы орторомбической формы, причем характерна ступенчатая слоистость кристаллов, т. е. каждый новый слой кристаллизуется на предыдущем, образуя пирамиду из параллельных ромбических плоскостей (рис. 35 а в). Кристаллы твердых углеводородов, принадлежащих разным гомологическим рядам, различаются по размерам и степени слоистости. Наибольшие размеры кристаллов и число ромбических плоскостей имеют нормальные парафиновые углеводороды (см. рис. 35, а), нафтеновые и особенно ароматические углеводороды характеризуются меньшей величиной кристаллов и менее слоистым строением (см. рис. 35, б, в). При совместной кристаллизации твердых углеводородов в неполярных, растворителях образуются смешанные кристаллы, которые являются твердой фазой переменного состава, т. е. состав может меняться при сохранении однородности кристаллической структуры, что характерно для соединений, близких по строению молекул. В данном случае возможность образования смешанных кристаллов обусловлена наличием в молекулах твердых углеводородов длинных парафиновых цепей в основном нормального строения. При совместной кристаллизации из неполярнрй среды форма кристаллов остается орторомбической, а их размер зависит от содержания циклических углеводородов в смеси с парафиновыми чем больше циклических углеводородов, тем меньше размер кристаллов и число наслоений. [c.129]

    В отношении чистых высокомолекулярных углеводородов были получены важные данные, относящиеся к процессам экстракции растворителями. Исследование кристаллической структуры решеток твердых углеводородов при помощи рентгеновых лучей позволило глубже понять и улучшить процесс дспарафинизации, усовершенствовать анализ и расширить область примеиения твердых парафинов. Данные по смазке и смазочным материалам являются результатом исследования чистых углеводородов на трение и износ, а также изучения поверхностных свойств и влияния молекулярной структуры на вязкость в широкой области температур и давлений. [c.495]

    При наличии избытка углеводородов происходит образование капельной эмульсии, стабилизация которой достигается адсорбцией эмульгатора из водного раствора с образованием мономоле-кулярного адсорбционного слоя, препятствующего коалесценции капель. При этом на границе раздела фаз возможно формирование жидко-кристаллических структур (мезофаз), сопровождающееся скачкообразным повышением вязкости и одновременно повышением агрегативной устойчивости системы [24—27]. Считают, что избыток эмульгатора над адсорбционным слоем на поверхности капель образует мицеллярную структуру, обладающую вязкоэластичностью и эффектом самоотверждения. Подобное поведение эмульсионных систем объясняется квазиспонтанным образованием на границе раздела фаз углеводородный раствор — ПАВ термодинамически устойчивых ультрамикроэмульсий прямого и обратного типов, что, по-видимому, оказывает основное влияние на обеспечение агрегативной устойчивости таких систем. [c.146]

    Состав и строение твердых углеводородов нефти начали изучать в конце прошлого века. Несмотря на многочисленные работы в этой области, среди которых нельзя не отметить классические исследования Энглера, Залезецкого, Харичкова, Ракузина, Маркуссона, Гурвича, Наметкина и др., вопрос о химическом составе твердых углеводородов и их кристаллической структуре до середины нашего столетия оставался спорным. [c.20]

    Чистый карбамид имеет тетрагональную структуру [9]. Его молекулы упакованы плотно, и свободные пространства, в которых могут разместиться молекулы другого вещества, отсутствуют (рис. 76). При образовании комплекса происходит перестройка кристаллической структуры карбамида из тетрагональной в гексагональную. При помощи рентгеноструктурного анализа установлена идентичность рентгенограмм комплексов двух парафиновых углеводородов нормального строения ( н-ундекана и н-гексадека-на), при этом положение линий спектров этих комплексов отличалось от таковых для чистого карбамида (табл. 26). Различие в параметрах элементарной ячейки кристаллов карбамида и комплекса подтверждает способность карбамида изменять в процессе комплексообразования кристаллическую решетку из тетрагональной в гексагональную. [c.196]

    Так как высокомолекулярные углеводороды образуют комплексы при П01вышенных температурах, а для вовлечения в комплекс углеводородов меньшей молекулярной массы процесс ведут при комнатной и даже более низких температурах, появляется возможность селективного извлечения, компле1Ксообразующих компонентов из нефтяного сырья. С помощью кристаллического карбамида при понижении температуры от 55 до 20 °С с использованием в качестве активатора хлористого метилена [70] было проведено фракциониравание парафино-нафтеновых углеводородов, выделенных из сырой долинской нефти смесью карбамида и тиокарбамида (табл. 36). Выделенные (фракции, как следует из приведенных данных, отличаются по составу и структуре углеводородов. Методом газо-жидкостной хроматографии совместно с ИК-спектроскопией установлен качественный и количественный состав выделенных углеводородов показано, что с понижением темпер-атуры обработки уменьшаются молекулярная масса и температура плавления комплексообразующих углеводородов. Дан- [c.231]

    Молекулы веществ, повышающих маслянистость, могут содержать не только полярные, но и неполярные группы. Так, углеводороды ряда СяНая или СпНгп+г могут образовывать на металлической поверхности слои ориентированных молекул, которые адсорбируются вследствие поляризации. Эффект ориентации неполярных длинноцепных молекул может быть достигнут введением в смазочную композицию ПАВ в весьма небольшой концентрации. Молекулы, оринтированные наиболее сильно, образуют слой толщиной около 20 нм, при нагревании толщина этого адсорбционного слоя уменьшается вследствие дезориентации молекул. Температура критического перехода, соответствующая предельной смазочной способности, связана с температурой десорбции ПАВ. При температурах ниже точки плавления металла молекулы группируются на его поверхности так, что полярная группа находится в контакте с металлом, а другие группы направлены наружу. Методом электронной дифракции можно установить, как изменяется поверхность металла при трении, — кристаллическая структура поверхностного слоя превращается в аморфную. [c.130]


Смотреть страницы где упоминается термин Кристаллическая структура углеводородов: [c.129]    [c.154]    [c.42]    [c.44]    [c.32]    [c.34]    [c.50]    [c.79]    [c.359]    [c.90]    [c.21]    [c.62]   
Графит и его кристаллические соединения (1965) -- [ c.30 ]




ПОИСК





Смотрите так же термины и статьи:

Кристаллическая структура

Кристаллическая структура твердых углеводородов (парафинов)



© 2025 chem21.info Реклама на сайте