Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полосы поглощения расщепление

    Лиганды можно расположить в ряд, в котором каждый последующий лиганд вызывает смещение полос поглощения в область более высоких волновых чисел или более высоких энергий поглощаемого света. В этом спектрохимическом ряду лиганды располагаются в порядке понижения силы создаваемого ими кристаллического поля и уменьшения энергетического расщепления -подуровня (см. с. 204). [c.347]


    Замена лигандов НдО на лиганды HgN приводит к изменению окраски комплексов от ярко-зеленого до синего цвета. Это объясняется увеличением параметра расщепления А (изменением энергии — -переходов), что приводит к сдвигу полос поглощения в сторону меньших длин волн (рис. 242). Еще больший сдвиг полос поглощения наблюдается в случае этилендиаминовых комплексов [N (en)з] + (А = 133 кДж/моль), окраска которых интенсивно-синяя. [c.613]

    Большинство комплексов переходных металлов — окрашенные соединения, т. е. они способны поглощать энергию в видимой области спектра. При изучении спектров поглощения этих соединений в твердом состоянии и в растворенном в различных растворителях обнаружено, что они поглощают световую энергию также и в ультрафиолетовой области. Полагают, что полоса или полосы поглощения, найденные в видимой части или в близкой ультрафиолетовой и инфракрасной областях спектра, характеризующиеся относительно низкими значениями мольных коэффициентов погашения (мало интенсивные) порядка 0,1—100, обусловлены переходами электронов центрального иона между расщепленными энергетическими уровнями, расстояние между которыми определяется силой и симметрией данного поля лиганда. Поэтому эти переходы называют <1—с1-переходами-, их слабая интенсивность вызвана, по крайней мере для свободного иона, тем, что эти электронные переходы запрещены правилами отбора. В ультрафиолетовой области полоса или иногда наблюдаемое сплошное поглощение имеют значительно большую интенсивность. Мольные коэффициенты погашения здесь обычно падают в пределах от 1000 до 10. Полагают, что в данном случае они обусловлены переходом электрона от одного компонента к другому. Как правило, это означает переход электрона от лиганда, который как основание или восстановитель, по-видимому, имеет больший избыток электронов, чем центральный ион. Такие спектры называют спектрами переноса заряда, и они характеризуют не только координационные [c.294]

    В общем случае при адсорбции окиси и двуокиси углерода на катализаторе появлялись две пары сильных полос поглощения. Расщепление внутри каждой пары полос составляло, как следует из спектров, приведенных на рис. 28, 200—250 см . В большинстве случаев полосы [c.106]

    Как следует из электростатики, сила поля (вызываемое им расщепление 10 О ) тем больше, чем больше заряд (или дипольный момент) лигандов, протяженность -орбиталей и чем короче расстояние центральный нон — лиганд. Практически 10 находят кз спектров растворов по частоте Vп,ax максимума полосы поглощения  [c.122]


    Под влиянием этого поля энергетический уровень 3 электронной оболочки расщепляется. Если поле, образуемое гидратной оболочкой, имеет симметрию октаэдра, то М электронный уровень расщепляется на два подуровня, если же поле имеет симметрию тетрагональной бипирамиды, то расщепление происходит на четыре подуровня. Следовательно, при октаэдрической конфигурации гидратной оболочки в спектре должна возникать одна полоса поглощения. Эта кривая поглощения должна описываться уравнением Гаусса (I, 70), если же молекулы воды располагаются в форме тетрагональной бипирамиды, то должно наблюдаться две полосы поглощения, которые расположены близко друг от друга и могут нарушать симметрию кривой Гаусса. [c.73]

    Спектр ЭПР атома водорода показан на рис. 9.5. С хорощим приближением величину 3-фактора можно определить из напряженности поля, соответствующего точке. х, которая лежит посередине между двумя жирными точками, соответствующими максимумам полос поглощения. Сверхтонкое расщепление а/дР — это расстояние между максимумами полос поглощения, измеренное в эрстедах. Обь1чно из спектра нельзя непосредственно определить знак а. Расщепление, показанное на рис. 9.2, говорит о том, что у а положительный знак. Если а — отрица- [c.16]

    Отдельные типы такого расщепления схематически изображены на рис. 7.22, где нижние уровни обозначены символом i2g, верхние—а разность энергии между верхним и нижним уровнями — Д. Переход электрона с одного уровня энергии на другой обусловливает появление в спектре комплекса определенной полосы поглощения. Используя квантово-механическую теорию возмущений, можно рассчитать длину волны максимума этой полосы, правда, с некоторыми допущениями. [c.182]

    Величина расщепления зависит как от природы лиганда, так и от природы металла и его степени окисления. Следовательно, каждый лиганд можно характеризовать силой поля, которая вызывает расщепление -уровней. В результате экспериментального исследования спектров многочисленных комплексов различных металлов было установлено, что влияние лигандов может быть представлено в виде спектрохимического ряда, где они расположены в порядке возрастания энергии расщепления 1 < Вг- < СЬ < МОз < Р" < ОН < НаО < < 5СК < ЫНд < N0 < СЫ- СО. Назначение этого ряда состоит в том, чтобы ориентировочно предсказать величину расщепления -уровней, а следовательно, и относительное положение полос поглощения в спектрах комплексов данного металла с разными лигандами. В некоторых случаях наблюдается аномальная последовательность для соседних или близко расположенных членов ряда, что необходимо иметь в виду. [c.212]

    Смещение частот колебаний объясняется тем, что в молекулярных кристаллах возникает меж-молекулярное взаимодействие, которое практически отсутствует в газе. И чем оно сильнее, тем существеннее смещение частот. Появление дополнительных частот в спектре кристаллов может быть вызвано расщеплением вырожденных частот понижения локальной симметрии, вследствие взаимодействия колебаний частиц в решетке и по другим причинам. На эти особенности налагается в ряде случаев взаимодействие растворенных веществ с молекулами растворителя (например, за счет возникновения водородных связей), приводящее к смещению полос поглощения и изменению их контура и интенсивности. [c.187]

    Для Со+ наряду с координационным числом 6 характерно также координационное число 4 и тетраэдрическое окружение Со+ лигандами при к. ч. = 4 комплексные соединения Со+ имеют ярко-синйю окраску. Б тетраэдрическом поле лигандов энергия расщепления -орбиталей значительно меньше, чем в октаэдрическом, полоса поглощения иона Со+ сдвигается в сторону более длинных волн, окраска переходит из розовой в синюю. [c.563]

    Не следует думать, что влияние целостной системы сказывается лишь на физических свойствах, разлагаемых по аддитивной схеме. В первой группе физических-свойств, непосредственно отражающей структурные особенности молекулы, такое воздействие также может быть. Оно выражается в сдвигах характеристических частот в ИК- или УФ-спектрах под влиянием различных заместителей, в расщеплении полос поглощения в спектрах ЭПР или ЯМР, в неприменимости аддитивного расчета оптической активности для соединений, содержащих несколько смежных асимметричных центров. В то же время, раз обнаруженные, сами эти отклонения, сдвиги, расщепления оказываются существенными для определения структурных особенностей молекул. [c.24]

    Другие методы разделения. Для разделения оптически активных веществ, ио-видимому, можно использовать различия в скоростях разложения фотохимически чувствительных энантиомеров при облучении светом той длины волны, при которой лежит полоса поглощения подлежащего расщеплению вещества. [c.67]

    Полосы поглощения, относящиеся к валентным колебаниям металл— лиганд, лежат в области 100—800 см и мало характерны для различных типов связей. Поэтому основные сведения о структуре комплексов получают анализом положения полос, характерных для лигандов. Лигандные полосы поглощения подтверждают присутствие лиганда в комплексе, а иногда позволяют указать ту его таутомерную форму, которая участвует в комплексообразовании. В результате смещения электронной плотности в лиганде под действием иона металла кратность связей в лиганде изменяется. Это ведет к сдвигу полос валентных колебаний (увеличение кратности связи увеличивает частоту) и позволяет судить о способе присоединения лиганда. Наконец, по расщеплению некоторых полос можно судить о симметрии комплексной частицы и ее фрагментов или установить присутствие неэквивалентно связанных и несвязанных лигандов или функциональных групп. [c.27]


    Окраска неорганических соединений меди (как и всех переходных элементов) объясняется возможностью d — -переходов вследствие расщепления ti-орбиталей основного СОСТОЯНИЯ Си + В поле лигандов. На эти полосы поглощения нередко накладываются [c.229]

    В противоположность термину сверхтонкое расщеп.гение термин тонкое расщепление используют в том случае, когда полоса поглощения расщепляется из-за снятия вырождения в результате расщепления в нулевом поле. Компоненты тонкого расщепления имеют различные интенсивности интенсивность центральных линий наибольщая, в то время как для боковых линий она наименьщая. В простых случаях разделение линий изменяется как функция Зсоз-0- 1, где 0 — угол между молекулярной осью 2 и направлением магнитного поля. [c.221]

    Двойные и тройные связи, а также ароматические группировки можно обнаружить с помощью ИК-спектров. Так, этиленовые углеводороды поглощают в области 1680—1620 см . Степень замещения при двойной связи можно определить по характеру поглощения в области 3000 и 1000—800 слг . В ИК-спектрах сопряженных диеновых углеводородов имеются характерные полосы поглощения в области 1650—1600 см 1, расщепленные на две полосы. Для однозамещенных ацетиленовых углеводородов характерны сильные полосы поглощения в области 3300 и 2140—2100 см 1. Двузамещенные ацетиленовые углеводороды поглощают в области 2260—2190 см 1, причем интенсивность поглощения зависит от симметрии молекулы. В ИК-спектрах ароматических углеводородов обнаруживаются характерные полосы поглощения в области 1600—1500 см и 3030 см . [c.230]

    Кроме [Ni(OHa)e] + и [Ni(NH3)eJ2+ возможны смешанные аквоам-минокомплексы [Ni(OH2)e n(NH3) ] + (n=l-i-6). Замена лигандов НаО на лиганды H3N приводит к изменению окраски комплексов от ярко-зеленого до синего цвета. Это объясняется увеличением параметра расщепления Д (изменением энергии d— -переходов), что приводит к сдвигу полос поглощения в сторону меньших длин волн (рис. 259). Еще больший сдвиг полос поглощения наблюдается в случае этилен-диаминовых комплексов [Ni(en)3l= + (Д=11 200 jn" ), окраска которых интенсивно-синяя. [c.651]

    Эффекты Фарадея в виде ДМОВ очень чувствительны к наличию в молекуле расщепления электронных уровней энергии, хотя само расщепление невелико, особенно по сравнению с шириной полосы поглощения. Сдвиг же кривых Лг(со) и ni( j) и разность этих кривых простираются на значительный интервал частот. Так, расщепление линий в электронных спектрах испускания или поглощения молекул в полях I Т составляет I см . В то же время ширина полос в конденсированной фазе достигает 10 см .  [c.256]

    На первой стадии образование батородопсина происходит за времена порядка десятков пикосекунд, а каждая последующая в 10 —10 раз медленнее предыдущей. Согласно современным представлениям, изменения обусловлены стерической невозможностью для прямого а11-гра с-ретиналя поместиться на поверхности опсина. Лишь изогнутый 11-4<ис-ретиналь вписывается в белок. Поглощение кванта света приводит к фотоизомеризации и тем самым к напряженным структурам, а в конце концов — к расщеплению химической связи между белком и хромофором. Переход к батородопсину влечет за собой изомеризацию ретиналя с образованием почти аИ-граис-формы, но такой, которая еще не релаксировала к самой низкоэнергетической геометрии. Более сильно релаксировавший а11-гранс-изомер появляется на стадии люмиродопсина. На каждой стадии белковый скелет перегруппировывается заметно выраженные изменения, связанные одной или более углубленными внутрь карбоксильными группами, становятся видимыми в метародопсине I. Образование метародопсина И сопровождается депротонированием шиффова основания, а также существенными изменениями липидной структуры. Именно метародопсин II з Jпy кaeт следующий набор биохимических стадий, которые мы коротко рассмотрим. Изменения оптического поглощения, по-видимому, согласуются с представленной картиной. Понижение энергии возбужденного состояния вследствие взаимодействия ретиналя с опсином приводит к длинноволновому сдвигу соответствующей полосы поглощения, причем чем сильнее взаимо-дейс№ие, тем сильнее сдвиг. Когда последовательно образуют- [c.239]

    Уровень й" центрального иона в %igoo -поле лигандов расщеплен на t g- аг и е Подуровни. Энергия перехода та электронов между ними (d — -переходы) невелика, и отвечающие ей частоты полос поглощения V = [c.125]

    В гл. XIV упоминалось, что сила кристаллического поля характеризуется величиной Д, называемой параметром расщепления. Различные по природе адденды создают кристаллическое поле, характеризующееся разной величиной Д. Положение же полосы поглощения зависит от параметра Д. Таким образом, при сравнении спектров поглощения комплексов, содержащих следующие адденды 1-, Вг-, С1-, ОН , р-, Н2О, N03-, 5H5N, МНз, Еп, ЫО г, оказывается, что максимум полосы поглощения первого типа смещается в коротковолновую область при переходе от аддендов правой части ряда к аддендам левой части. Иллюстрацией этого служат рис. 59 и 60. Приведенный ряд (гипсохромный) справедлив для многих комплексов Си (II), Со (III), Сг (III) и N1 (II). Однако часто имеет место отклонение от этого ряда. [c.312]

    На положение полосы поглощения, отвечающей й — -переходам электронов, оказывают влияние некоторые другие факторы, например явление изомерии. Введение в комплекс типа МЛе иных аддендов, например аддендов В с образованием комплекса МА4В2, приводит к искажению октаэдра, понижению его симметрии, а следовательно, к расщеплению электронных уровней. При этом увеличивается число полос поглощения. Действительно, часто менее симметричные ц с-изомеры отличаются более сложным спектром поглощения. Иногда полосы поглощения в спектре Ч с-изомера смещены относительно полос поглощения трансформы (табл. 83), Однако некоторые изомеры отличаются лишь интенсивностью полос поглощения, но не их положением. [c.312]

    Замена одного лиганда на другой при сохранении геометри-ческого строения комплекса приводит к смещению полос поглощения в спектре комплекса. Так, при замене молекул НгО в комплексе [Со(НгОб] + на молекулы NH3 спектральная поло-са поглощения смещается в область увеличения волнового чис-ла, что свидетельствует о большей энергии расщепления -подуровня. В свою очередь замена молекул NH3 в комплексе [ o(NH3)e] + на ионы N- приводит к еще более сильному смещению полосы поглощения в область больших волновых чисел. При замене лигандов в таком же порядке константы нестойкости комплексов уменьшаются. [c.347]

    Тетраэдрическое окружение Со(П) дает высокоспииопую конфигурацию иона А,, t g) Особенность спектров Со(И) в тетраэдрической координации — большая интенсивность полос поглощения и сдвиг их в длинноволновую область. Этим обусловлен типичный для многих тетраэдрических соединений кобальта (I ) голубой цвет. Основная полоса поглощения соответствует переходу Ат Т Р) (см, рис. 8.9,6), Может обнаруживаться также тонкая структура полосы, обусловленная спнн-орбитальным расщеплением состояния Т1 Р). Другие во 1-можные переходы в тетраэдрическом поле лигандов лежат далеко за пределами видимой области. [c.174]

    При наличии в комплексном соединении двух или более одинаковых лигандов полосы поглощения в ИК-спектре могут расщепляться. Однако у гранс-изомеров, обладающих центром симметрии, расщепление полос не происходит, что позволяет отличить их от цис-изомеров. Так, в области 1100 см транс-изомер [СоЕп2(5СЫ)2]5СЫ имеет одну полосу (1126 см ), а цис-то- [c.161]

    На рис. 6.21 приведен спектр иона [N1 (Н20)б] . В нем три полосы поглощения при 8500, 13500 и 25300 см". Все они обладают низкой интенсивностью, поскольку относятся к запрещенным по четности переходам. По спину разрешены переходы между подуровнями расщепления терма Р и Р. Если первая полоса относится к переходу A2g->-42g ( ООд), то при значении Д = 8500 см по диаграмме можно определить положение двух спектральных полос, соответствующих переходам A2g->-4 g ( Р) и [c.235]

    Задача 11.6. Как видно из рис. 11.6, полоса поглощения -перехода в комплексе [Ti (НгО) ] сильно раэмьгга, что обусловлено электронно-колебательными эффектами, но все же, как ожидается из картины расщепления уровней в октаэдрическом поле, в спектре водного раствора комплекса TI I3 6H2O [c.424]

    Задача 6.5. Как видно из рис. 58, полоса поглощения d— -перехода в комплексе [Т1(Н гО)бР сильно размыта, что обусловлено электронноколебательными эффектами (см. далее раздел 6.5), но все же, как ожидается из картины расщепления уровней в октаэдрическом поле, в спектре водного раствора комплекса Т1С1з-6Н20 имеется всего одна полоса электронного перехода. Если же определить спектр поглощения этого комплекса в твердой фазе, то обнаруживаются две полосы d— -переходов при 15 000 и 18 300 см . Объясните происхождение этих полос, отнесите их к определенным электронным переходам, свяжите объяснение с изменением структуры координационного узла комплекса в кристаллическом состоянии по сравнению с состоянием в растворе. [c.179]

    Селенат-ион SeOj. Как и сульфат-ион, селенат-ион имеет тетра зд-рическое строение. ИК-спектры селенагов характеризуются в интерв ше 400—1100 см" наличием интенсивной, часто сложной (расщепленной на несколько компонентов) полосы поглощения v/SeO) в области -850—950 см" и полосы S/SeO ") около -410—470 см средней или высокой интенсивности (часто также расщеплякзщейся на два-три компонента). Частоты v SeO), теоретически запрещенные в ИК-поглощении для тетра зд- [c.565]

    Гидрированием этого амина было доказано, что он содержит одну двойную связь, положение которой было установлено по появлению в УФ-спектре полосы поглощения при 226 ммк, характерной для винил-аминов. Это было также подтверждено данными ИК-спектроскопии. Образование нерастворимого в щелочи бензолсульфонильного производного подтверждает, что амин является вторичным, а течение гофмановского расщепления свидетельствует о его циклическом строении. Считают, что образование амина III обусловлено пространственной сближенностью двух функциональных групп в оксиокоиме I. [c.98]

    III область xiajpактеризуется двумя полосами поглощения—1450 см- и 1380 см-. Полоса поглощения 1450 ом- может быть вызвана как ароматическими атомами углерода, так и алифатическими. Поглощение при 1380 OM- вызвано аюимметрпчными деформационными колебаниями СНз-групп. Расщепление данной полосы поглощения в дублет позволяет предполагать наличие в составе молекул пековых материалов гем-диме-тильных лрупп. [c.59]

    Как известно [1], бор в стеклах находится в основном в тройной координации по отнощению к кислороду (полоса 1300 см ), и согласно [6], полоса в районе 1100 ш должна соответствовать бору, находящемуся в четверной координации. Для тетраэдров типа ВО4, разрешенными в ИК-области, характерны лишь два колебания — трижды вырожденные антисимметричные валентное и деформационное. В данном случае им соответствуют полосы поглощения в районах 1100 и 725 см Однако при температурах нагрева выше 800° С наблюдается расщепление этих полос. Так, полоса в районе 1100 м расщепляется на три полосы — 1045, 1090 и 1120 см . Это указывает на то, что тетраэдры ВО4 деформированы, вследствие чего вырождение колебаний снимается. В связи с этим полосу 475сж- можно отнести, вероятно, к одной из полос дважды вырожденного колебания ВО4, ставшего активным в ИК-области вследствие понижения симметрии. Термообработка стекла при 950° С приводит к исчезновению этих полос, вновь появляется мощная полоса поглощения в районе 1300 см , бор снова переходит в тройную координацию. [c.122]

    Легче интерпретировать дихроизм п—я -переходов карбонильных соединений. В данном случае имеется набор правил, известных как правила октанта, которые позволяют предсказывать знак и величину КД простых соединений [47]. Разработан также теоретический подход к анализу КД-спектров и спектров поглощения белков в высокоэнергетической УФ-обла-сти. В пределах регулярной р-струк-туры, а-спирали и кристаллических областей электронные переходы соседствующих друг с другом амидных групп могут быть связаны, в результате чего имеет место делокализация возбуждения. Такая делокализация (экситон) приводит к расщеплению (давыдовскому расщеплению) на два перехода с различающимися энергиями и направлением поляризации [7, 44]. Так, полоса поглощения амидной группы с тах = 52 600 см- в случае а-спирали расщепляется на две компоненты с Vmax=48 500 и 52 600 см . Кроме того, низкоэнергетические я—п - и п—я -переходы весьма близки по энергии, что может приводить к формированию состояния, представляющего смесь двух указанных состояний с появлением вращательной силы в я—я -полосе, знак которой противоположен знаку вращательной силы в п—я -полосе (см. работу [44]). И знак, и интенсивность КД-полос зависят от конформации соединения, что позволяет четко различать а-спирали, -структуры и статистический клубок. В водных растворах измерения проводят при длинах волн, простирающихся вплоть до вакуумного ультрафиолета, т. е. до волновых чисел - бООООсм [48]. [c.26]


Смотреть страницы где упоминается термин Полосы поглощения расщепление: [c.73]    [c.101]    [c.148]    [c.132]    [c.254]    [c.256]    [c.261]    [c.28]    [c.295]    [c.245]    [c.246]    [c.312]    [c.122]   
Молекулярная биофизика (1975) -- [ c.286 , c.305 ]

Инфракрасная спектроскопия полимеров (1976) -- [ c.95 , c.142 ]




ПОИСК







© 2025 chem21.info Реклама на сайте