Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белково-нуклеиновая организация

    Общие принципы организации типичных спиральных и изометрических вирусов были изложены в двух предыдущих разделах. Некоторые физические и химические свойства простых РНК- и ДНК-содержащих вирусов суммированы в табл. 7—9. Те же самые принципы лежат и в основе организации более сложно устроенных вирусов, отличающихся лишь большим числом белковых оболочек, построенных из капсомеров (термин нуклеокапсид теряет свое значение в этом случае), или же наличием наружной оболочки или отростка и других органелл. Структурное и в особенности важное биологическое значение этой возрастающей сложности рассматривается в следующих разделах. В первую очередь мы рассмотрим вирусы, содержащие белки более чем одного типа, затем перейдем к вирусам, имеющим более одной молекулы нуклеиновой кислоты затем — к вирусам, состоящим из частиц более чем одного типа, к частицам с наружными оболочками и различными органеллами затем к вирусам, не имеющим совсем никакой частицы и, наконец, к образованиям, совсем уже не являющимся вирусами. [c.153]


    Способность клеток поддерживать высокую упорядоченность своей организации в хаотичной Вселенной зависит от генетической информации, которая реализуется, сохраняется, воспроизводится, а иногда и совершенствуется в четырех генетических процессах - синтезе РНК и белка, репарации ДНК, репликации ДНК и генетической рекомбинации. Эти процессы, в которых создаются и поддерживаются клеточные белки и нуклеиновые кислоты, одномерны в каждом из них информация, заключенная в линейной последовательности нуклеотидов, используется для образования либо для изменения другой линейной последовательности нуклеотидов (молекулы ДНК или РНК) или линейной последовательности аминокислот (молекулы белка). Поэтому генетические события проще для понимания, чем большинство других клеточных процессов, связанных с выражением информации, которую несут в себе сложные трехмерные поверхности белковых молекул. Быть может, именно благодаря этой относительной простоте генетических механизмов мы знаем и понимаем их гораздо лучше, чем большую часть других событий, происходящих в клетке. [c.253]

    В отличие от технических (искусственных) систем все процессы развития в биологических системах принципиально необратимы, характеризуются определенным направлением от простого к сложному и используют механизм самовоспроизведения для закрепления структур и функций, достигнутых на каждом этапе эволюции. Ранее бьшо выдвинуто предположение, что прогрессивная эволюция организмов строится на некоторых общих принципах полимеризации, т. е. увеличении числа однородных компонентов дифференциации, т. е. разнообразной специализации этих компонентов интеграции, т. е. согласовании и объединении их функций в целостной организации . И далее ...объединение линейной структуры нуклеиновых кислот с белковыми телами и поддержание подвижного равновесия в сравнительно устойчивой системе означало, очевидно, возникновение нового качества — возможности самовоспроизведения как основы жизненных процессов. Только таким путем всегда создавалось множество сходных индивидуальностей, послуживших материалом для отбора быстрее нарастающих, более устойчивых систем с более точным механизмом самовоспроизведения. Это и лежит в основе возникновения и эволюции живых существ. Вместе с тем уже в самых элементарных жизненных процессах проявляется и наличие ре- [c.9]

    Полезно бросить взгляд на усложнение биологических объектов на разных, последовательных уровнях их структурной и функциональной организации. На самой низшей ступени мы можем взять, например, один из бактериальных вирусов, бактериофаг, известный под обозначением Н-17, использованный во многих исследованиях. Его наследственный аппарат содержит всего три гена. Один ген содержит информацию о структуре белка А, функция которого еще недостаточно выяснена. Второй ген обусловливает структуру белка, из которого построена оболочка фага, а третий ген направляет образование фермента, обеспечивающего репликацию, то есть получение новых копий нуклеиновой кислоты фага, когда он проникает в бактериальную клетку к начинает стремительно размножать себя. Как легко видеть, все здесь сведено к минимуму — к тому минимуму, который является уже последним пределом три гена и три белка. Но зато — что и характерно для всех вирусов вообще — этот вирус не способен практически ни к каким самостоятельным проявлениям жизнедеятельности. Лишь одно ему доступно — заражая клетку, встраивать свою наследственную программу в синтезирующие системы клетки, переключать их работу на себя и так организовать воспроизводство своих новых копий. И второе после того как вирусные частицы покидают клетку, где они были построены, и до того, как они проникнут в новую, еще не зараженную клетку, — словом, в тот период, когда вирус существует вне клетки, белковый чехол защищает его нуклеиновую нить от разрушения. Вот и все, что мы имеем на уровне бактериального вируса, фага. [c.162]


    Следует отметить, что описанная для ядерных РНП частиц структурная организация явилась совершенно новым типом организации нуклеопротеида, когда нуклеиновая кислота наматывается на серию компактных белковых глобул, образуя цепочку бусин на нити. Позднее точно такой же принцип организации был описан, как известно, для хроматиновых фибрилл, нуклеосом (см. гл. 3), т. е. он является общим для главных полимеров клеточного ядра, ДНП и РНП. Однако лишь после открытия этого типа организации для нуклеосом он получил общее признание. [c.205]

    Некоторые особенности двухцепочечных полинуклеотидов непосредственно указывают на то, что их организация радикально отличается от организации белковых молекул. В двухцепочечной структуре определенные группы оснований нуклеиновых кислот оказываются практически недоступными для различных химических агентов. Это заставляет предположить, что основания расположены внутри структуры. Напротив, все боковые группы белков локализованы снаружи образуемых молекулами спиралей или слоев (см., например, рнс. 1.1). Все нуклеиновые кислоты независимо от последовательности способны образовывать одинаковую двухцепочечную структуру. В белках же последовательность является решающим фактором, от которого зависят само наличие определенной вторичной структуры и ее тип. [c.168]

    Вирусы — это облигатные внутриклеточные паразиты, использующие для синтеза своих белков биохимический аппарат клетки-хозяина. Они чрезвычайно разнообразны по строению и организации генома - некоторые имеют РНК-геном, состоящий всего из нескольких генов, другие обладают ДНК-геномами с числом генов до двух сотен. Структурно вирус представляет собой просто белковый футляр (капсид), в который упакована нуклеиновая кислота. Обнаружены и еще более простые формы живых организмов  [c.305]

    Общая картина белково-нуклеиновой организации рибосом сильно отличается от таковой для вирусов. Для нее характерно наличие множества контактов между белками и нуклеиновыми кислотами, причем эти контакты, по-видимому, являются очень тесными. Например, многие рибосомные белки связываются с определенными участками рибосомных РНК (рРНК), защищая их от ферментативного расщепления. Имеют место и коопе- [c.211]

    Согласно современным представлениям, рибосомные белки в отсутствие рРНК вряд ли могут самостоятельно собираться в какую-либо упорядоченную макроструктуру. Действительно, в растворе удалось обнаружить весьма немного специфических парных контактов между рибосомными белками. В опытах по сщиванию, проведенных на нативных рибосомах, показано, что многие белки расположены достаточно близко друг к другу, однако неизвестно, сколько белковых пар непосредственно контактирует и являются ли эти контакты достаточно прочными, чтобы внести существенный вклад в стабилизацию конечной структуры. (На рис. 1.7 приведена схематическая картина белково-нуклеиновой организации 705-рибосомы и различных 508-частиц.) [c.212]

    Следовательно, необходимо, чтобы состав белков мог меняться в широких пределах, так чтобы они узнавали различные субстраты и взаимодействовали с ними. Для некоторых белков требуется присутствие других соединений (небелковой природы) для участия в процессах узнавания и превращения. Такие соединения называются коферментами. Поэтому можно заранее сказать, что катализаторы белковой природы, или ферменты, должны обладать высокой степенью упорядоченности и организации. Кроме того, вся необходимая информация должна быть записана наиболее компактным образом. Такие упорядоченные биополимеры, с помощью которых работает и самовоспроизводится двигатель внутреннего сгорания клетки, также должны совершеиио точно воспроизводиться. Было установлено, что действие ферментов высокоспецифичио структуре субстратов. Следовательно, информация о молекулярной организации белков (ферментов) должна надежно храниться, будучи записанной на стабильном, относительно консервативном языке. И вот тут-то выходят на сцену нуклеиновые кислоты. Значит, существует еще одно соответствие [c.15]

    Лит Богданов А А, Леднева Р К, Нуклеиново-белковое узнавание, в сб Итоги науки н техники, сер Молекулярная биология, т 5, М, 1975, Нуклеиново-белковое узнавание, там же, т 17, М, 1982, Зенгер В, Принципы TpvrnpHOH организации нуклеиновых кнслот, пер с англ, М, 1987 [c.304]

    В большом числе случаев для функционирования белков и нуклеиновых кислот необходимо, чтобы несколько полимерных цепей были соединены в единый комплекс. В Случае чисто белковых образований такой комплекс также рассматривается как белок, состоящий из нескольких субъединиц. Субъединичная структура белков часто фигурирует в научной литературе как четвертичная структура, т.е. как уровень организации, следующий за третичной структурой. Нуклеиновые кислоты с комплементарными последовательностями нуклеотидов образуют двуспиральные структуры. При определенных структурных особенностях могут образовываться и структуры, содержащие три цепи,— тре.хспиральные структуры. Наконец, многие функционально значимые образования содержат как белки, так и нуклеиновые кислоты такие образования называют нуклеопротеидами. В основе образования нуклеопротеидов лежат высокоспецифичные взаимодействия между соответствующими полипептидными и полинуклеотидными цепями, т.е. способность молекул биополимеров к взаимному узнаванию. [c.102]


    Метод нашел также широкое применение для выявления элементов пространственной организации комплексов биополимеров, в частности комплексов белков с нуклеиновыми кислотами. Если, например, фрагмент нуклеиновой кислоты принимает участие во взаимодействии с белком, то реагент, действующий на свободную нуклеиновую кислоту, не сможет атаковать фрагмент, экранированный молекулой белка. Поэтому на картине, отражающей распределение модифицированных фрагментов вдоль цепи нуклеиновой кислоты, на участке, закрытом бел-1<ом, будет наблюдаться резко пониженный уровень модификации, своего рода отпечаток белковой молекулы. Этот метод получил название футприптита, что означает <отпечаток ноги>. [c.324]

    Еще слишком мало достоверных данных получено относительно макромолекулярной организации нуклеиновых кислот и белков в нуклеопротеидах. В дезоксинуклеогистонах и родственных им комплексах основной белок в большей или меньшей степени закручен вокруг ДНК, которая в нуклеопротеиде имеет ту же конформацию, что и в изолированном состоянии [360, 361, 408, 4091. Связывание фосфатных ионизированных групп с основными группами белка осуществляется, по-видимому, главным образом за счет солеобразных связей, так как при растворении в 1 М. растворе хлористого натрия нуклеопротеиды в значительной степени диссоциируют [362[. Спектрофотометрическое титрование нуклеогистона из зобной железы теленка фактически идентично титрованию свободной нативной ДНК при тех же значениях ионной силы [363]. По-видимому, большое значение имеют стереохимические факторы, которые определяют укладку белковых субъединиц в большой жело- [c.628]

    По определению X. Френкель-Конрата, вирусы - это частицы, состоящие из одной или нескольких молекул ДНК или РНК, обычно (но не всегда) окруженных белковой оболочкой вирусы способны передавать свои нуклеиновые кислоты от одной клет-ки-хозяина к другой и использовать ее ферментативный аппарат для осуществления своей внутриклеточной репликации путем наложения собственной информации на информацию клетки-хозяина иногда вирусы могут обратимо включать свой геном в геном хозяина (интеграция), и тогда они либо ведут скрытое существование , либо так или иначе трансформируют свойства клетки-хо-зяина [24]. В приведенном определении отмечены характерные особенности жизненного цикла вирусов, которые находят отражение в организации их генома. Вирусы являются внутриклеточными паразитами и используют для своего размножения белоксинтезирующий аппарат клетки-хозяина. Жизненный цикл вируса начинается с проникновения внутрь клетки. Для этого он связывается со специфическими рецепторами на ее поверхности и либо вводит свою нуклеиновую кислоту внутрь клетки, оставляя белки вириона на ее поверхности, либо проникает целиком в результате эндоцитоза. В последнем случае после проникновения вируса внутрь клетки следует его раздевание - освобождение геномных нуклеиновых кислот от белков оболочки, что делает вирусный геном доступным для ферментных систем клетки, обеспечивающих экспрессию генов вируса. [c.19]

    Форма, организация и функции клетки, т. е. ее жизнь, определяются ее белковым составом и активностью индивидуальных белков. Отсюда следует, что генетические инструкции должны содержать информацию, необходимую для точного синтеза набора белков, характерных для данной клетки. Эта информация закодирована в структуре очень больших молекул дезоксирибонуклеино-кислоты. При делении клетки необходимо точное воспроизведение этих молекул с последующим равным распределением информации между дочерними клетками. Эта информация должна-быть передана от ядра к белковым фабрикам — рибосомам. Изменения химической структуры дезоксирибонуклеиновой кислоты выявляются в виде мутаций в последующих поколениях. Наибольший вклад в расшифровку механизмов наследственности внесли работы, проведенные на непатогенной кишечной бактерии Es heri hia oli и на бактериофагах (бактериальных вирусах) последние обладают лишь ограниченным количеством генетической информации, содержащейся в нуклеиновой кислоте, которая окружена специфической белковой оболочкой они способны к самовоспроизведению только путем использования синтетического аппарата жи- [c.17]

    Отличие вирусов от других организмов заключается в двух особенностях 1) вирусная частица (вирион) содержит только один вид нуклеиновых кислот — или ДНК, или РНК 2) вирионы отличаются необычной для живых существ простотой организации — они не имеют собственного метаболизма, не содержат клеточных органелл, в том числе рибосом, и очень часто состоят только из нуюхеиновой кислоты, заключенной в белковую оболочьсу. В связи с этим вирусы способны размножаться исключительно за счет использования метаболического аппарата другой клетки, т. е. они являются внутриклеточными паразитами. [c.150]


Смотреть страницы где упоминается термин Белково-нуклеиновая организация: [c.55]    [c.125]    [c.55]    [c.624]   
Биофизическая химия Т.1 (1984) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте