Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислоты нуклеиновые основные цепи

    Полиэлектролиты. Если звенья макромолекулы содержат боковые ионогенные группы, то полимеры проявляют своеобразные-электрические, конфигурационные и гидродинамические свойства. Такие полимеры называют полиэлектролитами. К ним относятся поликислоты (полиметакриловая, нуклеиновые кислоты и др.) полиоснования полиамфолиты. Полиамфолиты содержат кислотные-и основные группы в одной макромолекуле. Это белки и синтетические полипептиды. Они построены из аминокислот и содержат основные (ЫНзОН) и кислотные (—СООН) группы, которые располагаются не только на концах цепей, но и в боковых ответвлениях. Раствор каждого полиамфолита в зависнмости от его состава имеет определенное значение pH, при котором сумма положительных и отрицательных зарядов в цепи равны. Это значение pH называется изоэлектрической точкой (ИЭТ). При pH ниже ИЭТ в цепи преобладают положительные заряды из-за подавления диссоциации СООН-групп. При достаточно низком pH полиамфолит превращается в полиоснование. При pH выще ИЭТ полиамфолит постепенно переходит в поликислоту. [c.287]


    В природе синтез белков всегда направлен на формирование определенной первичной структуры и протекает в водных средах при обычных температурах в соответствии с универсальным генетическим кодом под влиянием специфических ферментов. Основная схема этого процесса в настоящее время уже известна. Всю генетическую информацию, обеспечивающую формирование определенной первичной структуры полипептидных цепей и макромолекул белка, несут важнейшие биополимеры, относящиеся к классу сложных полиэфиров, - нуклеиновые кислоты. Эта информация определяется последовательностью соединения друг с другом различных нуклеотидных оснований - звеньев этого полимера. [c.349]

    Нуклеопротеиды — белки, являющиеся важнейшими составными элементами ядер живых клеток и вирусов. Связь белка, обладающего основными свойствами, с молекулой нуклеиновой кислоты (НК) в них осуществляется за счет солеобразных и водородных связей и легко разрушается путем простой солевой коагуляции белка. В результате такого процесса нуклеиновые кислоты могут быть выделены в свободном состоянии. Строение нуклеиновых кислот, выделенных впервые еще в 1868 г. Ф. Мишером, современником великого Менделя, в течение длительного периода времени оставалось неясным. Начиная с 30-х годов XX столетия все больше подтверждений находила гипотеза, что этот класс соединений каким-то образом связан с передачей наследственных свойств при размножении организмов. Интерес к нуклеопротеидам постоянно возрастал. К 40-м годам XX столетия работами группы А. Тодда было показано, что в основе молекулы нуклеиновой кислоты лежат длинные цепи пентоз Р-1>-рибофуранозы и 2-дезок-си-Р-1)-рибофуранозы  [c.552]

    Линейные, разветвленные и сшитые макромолекулы. При определенных условиях даже простейшая реакция (1) может приводить к образованию не линейных, а разветвленных М. При этом ветви могут иметь длину того же порядка, что и основная цепь (длинноцепные ветвления), или состоять лишь из нескольких повторяющихся звеньев (короткоцепные ветвления). Разветвленные М. являются промежуточной формой между линейными и сшитыми М. (см. также Высокомолекулярные соединения). Примером линейных М. могут служить М. каучука натурального, регулярного поли-этилена, полиамидов и полиэфиров сложных, полученных поликонденсацией бифункциональных мономеров, целлюлозы, нек-рых белков, нуклеиновых кислот и др. Примерами синтетических разветвленных М. являются полиэтилен, полученный при высоком давлении, привитые сополимеры, полимеры, синтезированные поликонденсацией с участием три- или тетрафункциональных мономеров, природные М.— амилопектин (разветвленный компонент крахмала), гликоген и др. [c.49]


    На устойчивость двойной спирали в растворе влияют многочисленные факторы. Образование упорядоченных структур является экзотермическим процессом, и поэтому спирали стремятся расплавиться при повышении температуры растворов ДНК. Из числа сил, стабилизующих нативную форму, водородные связи и диполь-дипольные взаимодействия между пуриновыми и пиримидиновыми остатками, упакованными в двойную спираль [344], должны приводить к выделению тепла. В то же время следует ожидать, что гидрофобное взаимодействие будет эндотермическим. Значение гидрофобного взаимодействия иллюстрируется тенденцией водных растворов ДНК к денатурации при добавлении органических растворителей с большими неполярными остатками [345]. Как и следовало ожидать, высокая плотность заряда, обусловленная ионизованными фосфатными остатками, расположенными вдоль цепи ДНК, обусловливает неустойчивость спиральной конформации. В результате этого добавление умеренных количеств электролитов должно стабилизовать нативную форму ДНК, что и было обнаружено при добавлении таких солей, как галогениды щелочных или щелочноземельных металлов [346, 347]. Если определить температуру плавления (Г ) как температуру, при которой изменения в спектре, характеризующие денатурацию, происходят на 50%, то Т- , по-видимому, будет иметь примерно линейную зависимость от логарифма концентрации катионов щелочных металлов. В типичном случае повышается от 36 до 82° при увеличении концентрации ионов натрия с 0,0003 до 0,1 н. Увеличение концентрации соли приводит также к сужению интервала температур, в котором происходит переход спираль — клубок. В отношении стабилизации спиральной конформации особенно эффективны некоторые двухвалентные иопы, образующие специфические комплексы с фосфатными группами основной цепи ДНК (например, Mg +). Нуклеиновая кислота как бы образует стехиометрические комплексы с этими катионами, причем Тт таких комплексов высока даже при очень слабой ионной силе. При всех условиях переход спираль — клубок происходит в удивительно узком температурном интервале, причем 90% изменений, как правило, происходит в интервале менее 10°. [c.127]

    Нуклеиновые кислоты. Основным типом организации вторичной структуры нуклеиновых кислот является двойная спираль, состоящая из двух полинуклеотидных цепей. Существует ли со стороны регулярной структуры спирали дополнительное-воздействие на воду по сравнению с воздействием отдельных нуклеотидов Этот вопрос исследовался акустическим методом для различных типов спиральных структур полинуклеотидов [149], В качестве гидратационной характеристики использовали концентрационный инкремент скорости ультразвука А, который связан с парциальными объемами и сжимаемостью соотношением [c.61]

    В то время как основные цепи белков и нуклеиновых кислот, не говоря уже о полисахаридах, не являются цепями сопряженных я-связей, большинство важнейших коферментов — л-электронные сопряженные системы, содержащие ароматические циклы или гетероциклы. Таковы, как мы уже видели, аденилаты. Во флавиновых коферментах — во флавинмононуклеотиде ФМН и флавинадениндинуклеотиде ФАД фигурирует сопряженный [c.48]

    Основная цепь нуклеиновой кислоты состоит из чередующихся звеньев фосфорной кислоты и сахара — рибозы в рибонуклеиновой кислоте (РНК) и дезоксирибозы в дезоксирибонуклеиновой кислоте (ДНК). В этом смысле основные цепи РНК и ДНК лишены первичной структуры, они являются монотонным орнаментом, но не текстом. Однако к сахарам присоединены так называемые азотистые основания, которые уже не [c.82]

    НуклеотиДы представляют собой элементарные звенья, из которых построены сложные молекулы нуклеиновых кислот. В состав одной молекулы нуклеиновой кислоты могут входить многие тысячи нуклеотидов. Отдельные нуклеотиды в молекулах нуклеиновых кислот соединены в цепи при помощи фосфорной кислоты. Молекулярный вес РНК составляет от нескольких десятков тысяч до нескольких миллионов, молекулярный вес ДНК достигает 6—8 миллионов. Основная роль ДНК — передача наследственных свойств и перенос биологической информации РНК принимает непосредственное участие в биосинтезе специфических белков. В растениях нуклеиновые кислоты часто образуют комплексы с белками, так называемые нуклеопротеиды.  [c.231]

    Сильноосновные белки связываются с сильнокислыми нуклеиновыми кислотами (молекула нуклеиновой кислоты по сложности строения аналогична белку и является чем-то вроде апопротеина). Неизвестно, связаны ли эти два типа веществ 1в основном солевой связью или также и ковалентной. Белковая часть может быть отделена от нуклеиновой действием трипсина или в ряде случаев обработкой раствором хлористого натрия соответствующей концентрации. Остающаяся нуклеиновая кислота представляет собой цепь из повторяющихся единиц, каждая из которых состоит из остатков углевода, фосфорной кислоты и пуринового или пиримидинового основания. Углевод представлен Д-рибозой или 2-дезокси- -рибозой. Известные в настоящее время нуклеиновые кислоты содержат каждая только один вид сахара, но не оба вместе. Из дрожжей была впервые выделена нуклеиновая кислота, содержа- [c.717]


    Молекулы нуклеиновых кислот содержат целый ряд ионизуемых групп [10, 13]. В первую очередь это фосфатные группы основной цепи, представляющие собой, как это уже указывалось, [c.28]

    Ранние работы по радиационной химии нуклеиновых кислот показали, что эти реакции слишком трудно объяснить без знания реакций более простых молекул того же самого типа. Особенно важны простые фосфорные эфиры, так как фосфорные эфиры составляют основную цепь нуклеиновых кислот. [c.273]

    Нуклеиновые кислоты являются большими молекулами молекулярного веса 10 или больше. Основная цепь состоит из звеньев фосфорного эфира [c.273]

    Если в белковой молекуле основной цепью является полиамидная цепь, то главной цепью молекулы нуклеиновой кислоты является полиэфирная цепь, называемая полинуклеотидной. Эфир образуется из фосфорной кислоты и звена углевода. Одно из многочисленных гетероциклических оснований присоединено к атому С-1 каждого звена углевода через р-связь. Звено основание — углевод называется нуклеозидом. Нуклеотидом называется звено основание —углевод —фосфорная кислота. [c.88]

    В настоящей работе мы будем придерживаться классического подразделения уровней организации биоструктур [28]. Первичной структурой является последовательность звеньев (биомолекул), входящих в макромолекулы (аминокислот в белках, нуклеотидов в нуклеиновых кислотах, углеводных остатков в полисахаридах). Вторичная структура — упорядоченное расположение основной цепи макромолекулы (а-спираль или р-структура в белках, характер спаривания азотистых оснований в спиральных участках нуклеиновых кислот). [c.34]

    Термин вторичная структура (структура 2°) относится к той части макромолекулы, которая находится в спиральном состоянии, и определяется как перечень участков первичной структуры, входящих в спираль того или иного типа. В более общем виде ее можно определить как совокупность всех трехмерных участков, имеющих упорядоченную, локально-симметричную структуру основной цепи. Для белка, например, необходимо указать, какие звенья входят в а-спирали и какие в В-слои, а также какова полярность цепей. Участки, не имеющие форму спирали, часто называются для удобства описания клубкообразными , хотя на самом деле по своей структуре они могут сильно отличаться от беспорядочного клубка. Аналогично в случае нуклеиновых кислот должно быть указа- [c.15]

    Можно ли предсказать структуру Дать утвердительный ответ на этот вопрос было одной из главных целей биофизической химии в течение многих лет. Рассмотрим прежде всего вторичную структуру. Говоря о предсказании, необходимо рассмотреть два аспекта. Можно ли предсказать или количественно объяснить, исходя из заданной химической структуры основной цепи полимера, наиболее устойчивую геометрию, используя для этого известные сведения о ковалентных и нековалентных взаимодействиях Как будет показано в гл. 5 и 6, ответ на этот вопрос в основном положительный. Отдельный вопрос заключается в том, можно ли предсказать характеристики вторичной структуры, которая сформируется при заданных внешних условиях, исходя из данной первичной структуры и из определенного набора вторичных структур. Этот вопрос сводится для белка к вопросу о том, какие остатки окажутся в спиралях или слоях, а для нуклеиновой кислоты — какие остатки окажутся в двойной спирали. Для таких предсказаний необходимо знать, как каж- [c.25]

    Нуклеиновые кислоты являются кислотами потому, что в их молекулу входит остаток фосфорной кислоты (—НРОз). В результате взаимодействия молекулы фосфорной кислоты с 3 -гидроксильной группой предшествующего нуклеотида и 5 -гидроксильной группой последующего образуется основная цепь нуклеиновой кислоты (фосфат—сахар—фосфат—са- [c.59]

    Само существование фиксированной первичной структуры у белковой цепи доказывает, что в клетке должна быть заложена программа построения этой структуры. Текст не может возникнуть в результате случайных встреч аминокислот — подобно типографскому тексту он должен набираться на некоторой матрице. Это понимал уже Кольцов задолго до открытия роли нуклеиновых кислот. Он считал, что роль матрицы, ответственной за синтез белка, играет также белок. Сейчас мы знаем, что матрицами служат молекулы ДНК и РНК. Для набора текста необходим генетический код. Матричный принцип биосинтеза белка является основным для молекулярной биологии и молекулярной биофизики. [c.262]

    Физические и химические свойства белков во многих отношениях несопоставимы также со свойствами важнейших молекулярных компонентов живого - жирами, углеводами и нуклеиновыми кислотами. Химическое поведение последних определяется в основном локальными участками цепи. По сравнению с белками оно крайне просто и подчиняется классической теории химического строения. Жиры и высокомолекулярные углеводы в растворе не образуют фиксированных трехмерных структур. [c.52]

    Наконец, несколько слов о ситуации, наблюдаемой в ряду синтетических и природных полимеров. Термин первичная структура определяет строение полимера, а также конфигурацию всех хиральных центров, входящих в основную и в боковые цепи полимера. Если конформация цепи полимера известна, то говорят о вторичной структуре . В случае полимеров, в частности некоторых белков, нуклеиновых кислот и полисахаридов, может происходить дополнительное упорядочение структуры за счет множества слабых нековалентных взаимодействий между несколькими цепями (эти взаимодействия могут быть как внутримолекулярными, так и межмолекулярными). Термин третичная структура , может быть использован для описания молекул с известными первичной и вторичной структурами в том случае, если они находятся в меж-молекулярном взаимодействии, например образуют двойные нли тройные спирали. [c.33]

    Биосинтез — один из основных вопросов молекулярной биологии. Молекула белка состоит из взаимосвязанных цепей аминокислот, молекулы нуклеиновых кислот —из цепей нуклеотидов. Нуклеотиды, состоящие из азотистого основания, пентозы [c.40]

    В дальнейшем биосинтетическая функция генов выявлялась со все большей определенностью. Кольцов сформулировал соответствующую гипотезу вполне отчетливо, но полагал, что вещество гена — это белок (значение нуклеиновых кислот еще не было известно) [15]. Молекулярная биология установила, что нуклеиновые кислоты ответственны за биосинтез белковых цепей. Основной тезис молекулярной биологии, сформулированный Бидлом, гласит один ген — один фермент (см., например, [16]). Сейчас этот тезис формулируется более точно один ген — одна белковая цепь . [c.485]

    Основными фрагментами дезоксирибонуклеиновых кислот (ДНК) являются дезоксирибонуклеотиды, а основными фрагментами рибонуклеиновых кислот (РНК) -рибонуклеотиды (рис.3.36). По аналогии с аминокислотами в протеинах эти фрагменты отличаются только своими боковыми цепями, которые в ДНК в основном состоят из пиримидиновых производных - цитозина и тимина - и пуриновых производных - аденина и гуанина. В РНК присутствуют те же боковые цепи, только основание тимин заменено на урацил (рис.3.37). Кроме этих основных фрагментов нуклеиновых кислот [c.147]

    Изучение пространственных моделей и построение математических моделей позволяют предположить существование таких свойств упорядоченных конформаций углеводных цепей, по которым они отличаются от конформаций других важных биополимеров— белков и нуклеиновых кислот. Во-первых, углеводные цепи значительно жестче и, следовательно, число форм, которые может принимать полисахаридная цепь, более ограничено из-за пространственных запретов. Расчет по методу твердых сфер для цепей, в которых последовательно соединенные остатки разделены двумя связями, показывает, что обычно реализуется лишь 5 % возможных конформаций цепи [18]. Во-вторых, изменение последовательности углеводных остатков в полисахаридной цепи может приводить к гораздо более начительному изменению стереохимии молекулы, чем изменени порядка расположения аминокислотных или нуклеотидных остатков, поскольку в случае полипептидов или полинуклеотидов происходит перестройка лишь боковых цепей при сохранении структуры основной цепи, тогда как в полисахаридах изменение конфигурации или положения гликозидной связи ведет к существенным изменениям именно в основной цепи. В-третьих, углеводные цепи часто имеют разветвленную структуру с различным типом связей в точках ветвления, и взаимодействие [c.285]

    Основная цепь нуклеиновой кислоты состоит из чередующихся звеньев фосфорной кислоты и сахара — углевода рибозы в рибонуклеиновой кислоте (РНК) и дезоксирибозы в дезоксирибонуклеиновой кислоте (ДНК). К каждому углеводному звену присоединено одно из четырех азотистых оснований. ДНК и РНК — тексты, написанные четырехбуквенным алфавитом. Общая схема цепи имеет вид (Ф — фосфат) [c.36]

    Синтетические макромолекулы моделируют основную цепь белка или нуклеиновой кислоты. Макромолекула гомополимера не несет информации, не содержит текста . Ее свойства моделируют лишь те свойства биологических макромЬлекул, которые не зависят от особенностей первичной структуры. Вместе с те.м полимерная цепь имеет специфические возможности передачи информации об электронных и конформационных перестройках (см. 3.5.). [c.118]

    Природные нуклеиновые кислоты, а также многие фибриллярные белки способны растворяться с сохранением внутрИ молекулярной организации, присущей твердому состоянию. Например, можно растворить фибриллярный белок коллаген, сохранив характерную упорядоченную структуру триспиральных протофибрилл [28, 29]. В перечисленных примерах сохранение и стабильность упорядоченной структуры обусловлены наличием специфических вторичных внутренних связей. У -спиральных структур возникают внутримолекулярные водородные связи между пептидными группами основной цепи. У мульти-спиральных структур возникают межцепные водородные связи. [c.60]

    Превращения веществ в клетке (обмен веществ, или метаболизм), в результате которых из сравнительно простых предшественников, например глюкозы, жирных кислот с длинной цепью или ароматических соединений, образуется новое клеточное вещество, можно ради простоты подразделить на три основные группы. Сначала питательные вещества расщепляются на небольшие фрагменты (распад, или катаболизм), а затем в ходе реакций промежуточного обмена, или амфиболизма, они превращаются в ряд органических кислот и фосфорных эфиров. Эти два пути переходят незаметно один в другой. Многообразные низкомолекулярные соединения-это тот субстрат, из которого синтезируются основные строительные блоки клетки. Строительными блоками мы называем аминокислоты, пуриновые и пиримидиновые основания, фос-форилированные сахара, органические кислоты и другие метаболиты — конечные продукты цепей биосинтеза, иногда длинных. Из них строятся полимерные макромолекулы (нуклеиновые кислоты, белки, резервные вещества, компоненты клеточной стенки и т.п.), из которых состоит клетка. Эти два этапа биосинтеза клеточных веществ-синтез строительных блоков и синтез полимеров-составляют синтетическую ветвь метаболизма, или анаболизм (рис. 7.1). [c.214]

    Л и н е й н ы 0 М. построены из мономерных звеньев одного или разных типов, соединенных регулярно или нерегулярно химич. связями в длинные цепи. Длина таких цепей обычно составляет 10 —10 А нри поперечнике 3—7,5 А. Примером линейных М. могут служить М. каучука натурального, регулярного полиэтилена, полиэ(риров и полиамидов, полученных полимеризацией или поликонденсацией бифункциональных мономеров, М. нуклеиновых кислот, ряда белков, целлюлозы и др. В развет влен-н ы X М. к основной цепи присоединены боковые цепи большей или меньшей длины. 11римером разветвленных М. могут служить М. привитых сополимеров, крахмала, нек-рых белков, полиэфиров и полиамидов, получегшых из три- и более функциональных мономеров и др. [c.517]

    Сахара. связаны с пурина ми и (пиримндинамн р-Ы-гликозид->ыми связями. Фосфорная кислота связана с >-дезоксирибо-фуралоэндами эфирными связями, что и позволяет ряссматрн-зать основные цепи нуклеиновы.х кислот как полиэфиры. [c.328]

    Исследование нуклеиновых кислот стало в последнее десятилетие одной из наиболее заманчивых областей в молекулярной биологии. С химической точки зрения как дезоксирибонуклеиновая кислота (ДНК), так и рибонуклеиновая кислота (РНК) являются полинуклеотидами, основное звено которых состоит из фосфатной группы, сахара (рибозы или дезоксирибозы) и основания (пуринового или пиримидинового) основная цепь полимера представляет собой фосфоэфир, причем на одно повторяющееся звено приходится шесть атомов цепи в соответствии с моделью двойной спирали, предложенной Уотсоном и Криком [106]. В ДНК две антипараллельные цепи полинуклеотидов завернуты в спираль и соединены друг с другом водородными связями, образующимися между гетероциклами оснований. Макромолекула РНК представляет собой однотяжную спираль, вторичная структура которой определяется внутримолекулярными взаимодействиями. Полагают, что наиболее устойчивой из нескольких возможных структур является двутяжная спираль, образуемая участками одной и той же макромолекулы, подобная спирали ДНК, но участки с некомплементарными основаниями на периферии спирали образуют петли 1107, 108]. Для того чтобы лучше понять вторичную структуру нуклеиновых кислот, были приготовлены синтетические полинуклеотиды. Эти модельные соединения широко исследованы почти теми же средствами, что и синтетические полипептиды, моделирующие структуру белков. [c.118]

    Из этого примера видно, что основная цепь нуклеиновых кислот образуется в результате конденсации гидроксильных групп, связанных с 3 - и 5 -атомами углерода сахара рибозы в РНК (представлено на схеме) и дезокси-рибозы в ДНК - с группами ОН фосфорной кислоты. Основание во всех случаях присоединено к Г-атому сахара. Одна из групп ОН фосфорной кислоты не участвует в реакции поликонденсации. Для дважды этерифициро- [c.15]

    Нуклеазы, действующие на внутренние межнуклеотидные связи в молекулах ДНК и РНК, называются эндонуклеазами. При их участии осуществляется деполимеризация нуклеиновых кислот в основном до олигонуклеотидов. Нуклеазы, ускоряющие реакции последовательного отщеплеш1я нуклеотидов от РНК, ДНК или их фрагментов, начиная с конца полинуклеотидной цепи, называют экзоиуклеазами. Они обеспечивают распад нуклеиновых кислот до свободных нуклеотидов. [c.224]

    С ТОЧКИ Зрения фундаментальной структуры и биологической правильности спаривание АсТиОсСне вызывает сомнений. Эта комплиментарность лежит в основе корреляции между структурой и функцией нуклеиновых кислот (см. гл. 22.5). Она является также основной особенностью предложенной недавно альтернативной вторичной структуры ДНК, где сделана попытка решить одну проблему, на которую не дает ответа модель Уотсона-Крика. Это ни что иное как серьезные топологические затруднения, возникающие при разделении цепей полностью заплетенной двойной спирали ДНК в процессе биологической репликации (см. разд. 22.5.1.1). [c.46]

    Существует четыре типа вирусных нуклеиновых кислот одно-и двунитевые как РНК, так и ДНК. Двунитевая ДНК вирусов реплицируется в основном таким же способом, как бактериальная. Вирусы, содержащие однонитевую ДНК, типа бактериофага ФХ 174, начинают свой жизненный цикл впрыскиванием своей кольцевой ДНК в клетку хозяина, бактерии Е. соИ, в которой инфекционная плюс -цепь действует как матрица для построения комплиментарной минус -цепи, что приводит к образованию кольцевого дуплекса. После этого новая копия плюс -цепи постепенно сворачивается и разрезается на отрезки идентичной длины перед пединением 3 - и 5 -концов в замкнутое однонитевое кольцо. [c.200]

    Больщая часть важнейших коферментов — я-электронные сопряженные системы, содержащие гетероциклы или ароматические циклы. Как мы видели, к той же группе органических соединений относятся азотистые основания, нуклеозиды и нуклеотиды, из которых строятся цепи нуклеиновых кислот. Низкомолекулярные нуклеозиды и нуклеотиды и их производные в ряде случаев являются коферментами. Вероятно, важнейшим из них следует считать аденозинтрифосфат (АТФ). Сюда же относятся основные участники окислительно-восстановительных процессов — никотинамидные коферменты НАД и НАДФ и фла-виновые коферменты ФАД и ФМН. Напишем структурную формулу первых двух соединений  [c.95]


Смотреть страницы где упоминается термин Кислоты нуклеиновые основные цепи: [c.105]    [c.51]    [c.275]    [c.13]    [c.15]    [c.16]    [c.50]    [c.57]    [c.144]   
Молекулярная биофизика (1975) -- [ c.82 , c.91 ]




ПОИСК





Смотрите так же термины и статьи:

Нуклеиновые кислоты

Основность кислот



© 2024 chem21.info Реклама на сайте