Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Самосборка белков

    Самосборка белков. Специфическое взаимодействие определяет уникальное свойство белков — их способность к самосборке. Например, после обработки молекулы гемоглобина мочевиной она распадается на функционально неактивные протомеры. После удаления мочевины они самопроизвольно объединяются в нативную структуру гемоглобина. Возьмем более поразительный пример — гигантскую молекулу вируса табачной мозаики с 40 ООО ООО Да. Она состоит из одной молекулы РНК и 2130 белковых субъединиц, каждая из которых имеет ММ 17 500 Да. Если РНК и субъединицы разделить добавлением детергента, а затем убрать его, то нативная структура вируса полностью восстановится, сохраняя его биологические свойства. Самосборка не требует никакой дополнительной информации, происходит самопроизвольно путем взаимодействия комплементарных поверхностей молекул. Подчеркнем, что комплементарность поверхности молекулы белка определяется мозаикой радикалов аминокислот (поверхность третичной структуры). Последовательность [c.48]


    В данном случае восстановление нативной конформации не требует наличия никаких дополнительных структур. Какие же модели свертывания полипептидной цепи в соответствующую конформацию являются наиболее вероятными Одной из распространенных гипотез самоорганизации белка является гипотеза расплавленной глобулы. В рамках этой концепции вьщеляют несколько этапов самосборки белков. [c.36]

    В настоящее время известно много нелинейных неравновесных процессов в неорганическом мире, протекающих в физических и химических открытых системах с фазовым диспропорционированием энтропии. Некоторые из них обсуждены в главе 15 предшествующего тома [2. Раздел 15.3] и во введении настоящей книги. Поэтому саму по себе истинную неравновесность процесса самосборки белка нельзя еще считать бесспорным отличительным признаком живой материи. Однако во всех известных нелинейных неравновесных процессах, кроме структурной самоорганизации белка, поддержание возникшего из хаоса порядка в стационарном режиме оказывается возможным только при постоянном потреблении энергии извне и увеличении энтропии окружающей среды. Ячейки Бекара будут сохраняться лишь при подогреве, лазер испускать когерентное [c.99]

    Согласно предложенной феноменологической бифуркационной теории, самосборка белка осуществляется в неравновесной термодинамической системе, состоящей из двух подсистем - одиночной полипептидной цепи и водного окружения. Возникновение в такой системе процесса свертывания белковой цепи и его самопроизвольное развитие от беспорядка к порядку без нарушения второго начала термодинамики обусловлены неоднородностью случайных изменений флуктуирующей белковой цепи - наличием наряду с множеством обратимых равновесных флуктуаций также необратимых (неравновесных, бифуркационных) флуктуаций, определяемых конкретной аминокислотной последовательностью и текущим конформационным состоянием. Последовательная реализация специфического для данной аминокислотной последовательности набора бифуркационных флуктуаций завершается созданием трехмерной структуры белка. Вызванное спонтанным процессом свертывания уменьшение энтропии одной подсистемы - гетерогенной полипептидной цепи - компенсируется повышением энтропии другой подсистемы - окружающей среды (см. разд. 2.1). [c.586]

    Эти опыты показывают, что программа самосборки белка закодирована в его первичной структуре. По всей вероятности, важное значение при ренатурации белка имеет образование ядер , т. е. небольших участков упорядоченной вторичной структуры (стадия нуклеации). За этим сравнительно медленным процессом следует быстрое сворачивание цепи в нативную структуру. На первых этапах ренатурации белков, в поддержании нативной конформации которых участвуют дисульфидные мостики, образуются промежуточные производные с правильными и неправильными дисульфидными связями. В ряде случаев удавалось останавливать процесс ренатурации на определенных стадиях и выделять такие частично свернутые формы. Поскольку в целом сборка белка является достаточно быстрым процессом, можно сделать вывод о том, что природа не перебирает все возможные комбинации в очередности замыкания дисульфидных мостиков (при 4 S—S-связях их 105, а при 5 — уже 945), а сворачивание полипептидной цепи идет по ограниченному числу направлений и приводит к конформации, характеризующейся минимальной свободной энергией. [c.105]


    Основная цель химии белка заключается в объяснении физиологической роли белковых веществ на основе изучения их структуры. Этот подход предполагает изучение отдельных частей белковых молекул, выяснение взаимного расположения этих частей в индивидуальных белках, а также исследование химических и физических свойств белков в целом. К настоящему времени выделены сотни различных белков, а у десятков из них детально изучены структуры и функции. Сравнение этих молекул показывает, что в структуре большинства белков имеется много общего. Поэтому, прежде чем приступить к подробному изложению основ химии белка, полезно рассмотреть некоторые основные принципы структурной организации, функционирования н самосборки белков. [c.94]

    Четвертичная структура белков. Кооперативный эффект. Способность белков к специфическим взаимодействиям. Самосборка белков. [c.94]

    В заключительный период в результате самосборки белки укладываются вокруг нуклеиновой кислоты и образуются но- [c.23]

    В последующем изложении мы попытаемся обсудить несостоятельность равновесной термодинамики, решить проблему структурной организации белка и выяснить возможность в этом отношении нелинейной неравновесной термодинамики — физики открытых диссипативных систем, возникшей в первой половине 1980-х годов. Предпринимаемая попытка имеет, по-видимому, и более общее значение, так как биологические объекты всех уровней структурной организации являются открытыми системами. Учитывая это обстоятельство, а также демонстрируемую большинством авторов публикаций по свертыванию белковых цепей осведомленность в специфике используемого ими подхода, представляется целесообразным перед изложением общей теории самосборки белка кратко остановиться на некоторых принципиальных моментах и понятиях равновесной и неравновесной термодинамики. [c.433]

    Теоретической основой метода априорного расчета глобальных конформаций являются представление о механизме свертывания белковой цепи как о нелинейном неравновесном процессе, обусловленном и направляемом необратимыми флуктуациями (бифуркационная теория самосборки белка) (см. разд. 2.1) и представление о нативной конформации белка как о плотно упакованной структуре, обладающей минимальной югутренней энергией и согласованной в отношении всех внутриостаточных межостаточных взаимодействий валентно-несвязанных атомов белковой молекулы (физическая теория структурной организации белка) (см. разд. 2.2). [c.247]

    Хорошим примером дискретной системы, которую можно выделить и которая содержит тесно ассоциированные друг с другом белки и нуклеиновые кислоты, является вирус. Вирус простейшего типа состоит из РНК или ДНК, одно- либо двухцепочечной, окруженной белковой оболочкой, состоящей из идентичных или различных субъединиц, организованных в симметричную структуру. В более сложных типах вирусов имеется также внешний слой, состоящий из липидов и гликопротеинов. Между нуклеиновой кислотой и белком (белками) оболочки существует тесная взаимосвязь, генетическая информация для биосинтеза этого белка закодирована в нуклеиновой кислоте, и в то же время белок предохраняет нуклеиновую кислоту от действия нуклеаз клетки-хозяина. Еще более тесная физическая связь имеет место между белковыми субъединицами. Такая связь была продемонстрирована в результате разрушения вируса табачной мозаики, за которым следовала спонтанная самосборка белка в отсутствие нуклеиновой кислоты. Пустая оболочка, или капсида, была, однако, менее стабильна, чем содержавшие нуклеиновую кислоту реконструированные вирусные частицы. Этот результат указывает, что взаимодействия белок-ну-клеиновая кислота играют важную, хотя, вероятно, не столь значительную роль, по сравнению с белок-белковыми взаимодействиями. Вирусы, таким образом, как бы образуют смысловой мостик между предыдущим разделом и рассматриваемым ниже взаимодействием гистонов с нуклеиновыми кислотами. [c.567]

    Качественное изменение ситуации в изучении механизмов свертывания белковых цепей наметилось в самом конце 1980-х годов. Оно вызвано открытием нового класса белковых молекул, существование которых мало кто предполагал, во всяком случае, оно представлялось маловероятным. Их функции в жизнедеятельности клеток заключаются в содействии правильной невалентной сборки других белков, не становясь, однако, компонентами их окончательных физиологически активных структур. Белки этого класса получили название молекулярных шаперонов . Открытие шаперонов вместе с известными ранее, но необобщенными и не привлекшими к себе должного внимания данными поколебало, особенно на первых порах, общепринятую точку зрения на принципы структурной организации белковых молекул. Новые факты неизбежно вели к заключению, что существовавшее представление о свертывании полипептидной цепи in vivo как о самосборке белка, по меньшей мере не совсем точно отражает реальный процесс. Необходимость пересмотра устоявшегося мнения о взаимосвязи между химическим и пространственным строением белковых молекул диктовалась новыми экспериментальными данными, число которых начинает возрастать лавинообразно. Все они свидетельствовали об уменьшении выхода, замедлении скорости и даже полном прекращении сборки трехмерных структур одних белков по мере снижения вблизи рибосом концентрации других белков. Стали известны две группы молекулярных посредников, функции которых в клеточной сборке белковых цепей оказались значительными и разнообразными. Они влияют на скорость свертывания цепи, целенаправленно ускоряя или замедляя созревание нативной конформации, определяют порядок формообразования сложных комплексов, стимулируя реорганизацию белок-белковых взаимодействий в олигомерных структурах, облегчают деградацию неправильно свернутых цепей, стабилизируют, транспортируют и соединяют в соответствующих клеточных компартментах [c.412]


    Участие посторонних белков в сборке, как оказалось, не соответствует традиционному представлению о наличии прямой аналогии между механизмами свертывания полипептидных цепей в искусственных условиях и клетке. Ставшие известными функции молекулярных шаперонов потребовали определенной коррекции давно сформулированного и многократно подтвержденного в опытах in vitro принципа не нуждающейся в каких-либо посредниках самосборки белка. Выяснилось, что это не совсем так. Более того, оказалось, что в сложных клеточных условиях нужны белки, ассистирующие не только котрансляционное и посттрансляционное свертывание полипептидных цепей, но и помогающие транспорту белковых молекул через мембраны, реорганизации, диссоциации и ассоциации белков в олигомерные комплексы, сборке олигомеров внутри органелл и ликвидации белковых повреждений, вызванных стрессовыми и иными внешними воздействиями. [c.420]

    В настоящий момент уже ясно, что главные трудности связаны не с размером белковой молекулы, а с наличием на энергетической потенциальной поверхности такой молекулы минимумов. Поэтому первые работы были направлены на сглаживание потенциальных поверхностей, чтобы отчетливо выделялась траектория, ведущая к глобальному минимуму. При таком сглаживании, естественно, необходимо пожертвовать рядом деталей структурного представления белка. Основополагающей в методическом отношении здесь является работа Левитта и Варшела [33], но в качестве пионерской следует признать работу Птицина и Рашина [54] по предсказанию структуры миоглобина, исходя из существования отдельных а-спиралей. Моделирование самосборки белка осуществляли без применения ЭВМ, и поэтому спирали представляли в виде цилиндров. На поверхности этих цилиндров выделяли гидрофобные участки, которым разрешалось взаимодействовать друг с другом с образованием оптимальных структур. В результате оказалось, что одна из возможных упаковок спиралей соответствует наблюдаемой нативной структуре. [c.596]


Смотреть страницы где упоминается термин Самосборка белков: [c.83]    [c.528]    [c.263]    [c.83]    [c.528]    [c.157]    [c.212]    [c.212]   
Эволюция без отбора Автоэволюция формы и функции (1981) -- [ c.213 ]

Эволюция без отбора (1981) -- [ c.213 ]




ПОИСК





Смотрите так же термины и статьи:

Самосборка



© 2025 chem21.info Реклама на сайте