Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Распределение между двумя фазами, механизм

    Активация водорода при положительных потенциалах может осуществляться по ударному механизму. Молекулы водорода из газовой фазы активируются при адсорбции на поверхности платины с образованием Нг . Гидрирование на платине частично может осуществляться молекулярно-активированным водородом, что и обусловливает ее низкую селективность. При потенциалах положительнее 0,2в, когда адсорбция пропаргилового спирта уменьшается, на части поверхности становится возможной атомизация Нг —>-Н++Н, которая энергетически более вероятна, так как энергия разрыва Н—Н-связи составляет 104, а Н—Н+ — 61 ккал/моль. Активированный водород (Нг , НзО , Над Н+) расходуется на два параллельно текущих процесса — ионизацию и гидрирование. Распределение между ними зависит от природы гидрируемого соединения и его адсорбционной способности. [c.185]


    Дисперсии представляют собой сложные коллоидные системы, состоящие из частиц полимерной фазы, покрытых защитным веществом, и распределенных в дисперсионной среде, содержащей растворимые и нерастворимые ингредиенты. В соответствии с этим свойства дисперсий и процесс пленкообразования из этих систем определяются тремя основными факторами структурой и строением частиц, природой и характером распределения на их поверхности защитных веществ, составом дисперсионной среды. Роль каждого фактора в процессе пленкообразования и влияние этих факторов на свойства материалов и изделий определяются условиями переработки дисперсий. При получении пленок высушиванием посредством удаления влаги образование контактов между частицами происходит при определенной концентрации системы, и последние два фактора не оказывают существенного влияния на механизм пленкообразования. Однако природа защитных и других веществ, содержащихся в дисперсионной среде и остающихся в пленке после окончания процесса формирования, влияет на их свойства. При осуществлении процесса пленкообразования через стадию желатинизации путем удаления дисперсионной среды на пористых подложках или при воздействии растворов электролитов часть защитных веществ уходит с поверхности частиц, что оказывает влияние на процесс структурообразования при формировании пленок. Особенно значительно влияние природы защитных веществ и характера их распределения на поверхности частиц проявляется [c.201]

    Физические свойства каучуков определяются частично их химической природой, частично их средним молекулярным весом, и, наконец, распределением молекулярных размеров. Последний фактор до сих пор не привлекал большого внимания, но делалось много попыток разделить каучук на ряд более гомогенных фракций. Принятые методы вообще делятся на два класса 1) методы, основанные на более быстрой диффузии в растворитель низкомолекулярных компонентов, и 2) методы, основанные на равновесном распределении полидисперсных каучуков между золь- и гель-фазой с помощью жидкости, лежащей на границе растворителей и нерастворителей. Обсуждение механизма первого метода лежит вне плана этой статьи, но в принципе, во всяком случае, преимущество второго метода состоит в том, что здесь можно провести количественный анализ с помощью методов, рассмотренных выше. Эта проблема значительно сложнее любой из тех, которые уже излагались. Одним из осложняющих факторов является то, что температурный коэфициент растворимости высокомолекулярного каучука так велик, что обычно произвольно выбранная жидкость либо полностью смешивается с каучуком при всех удобных для работы температурах, либо совсем не растворяет его. Следовательно, чтобы провести фракционирование, необходимо пользоваться смесями растворителя и нерастворителя из эмпирического уравнения (42) Шульца следует, что фракционирование нужно проводить при постепенно изменяющемся составе такой смеси. Термодинамический анализ проблемы требует трактовки системы как четверной, даже если сделать упрощающее предположение, что в системе присутствует только два сорта каучука с различным молекулярным весом. Экспериментально замечено, что составы растворителя в обеих фазах совершенно различны [4], так что нельзя говорить о растворяющей смеси как об одной жидкости. Однако анализа такой системы пока еще не имеется. Шульц [48] усовершенствовал свой метод расчета [c.195]


    Механизм распределения компонентов смеси между фазами может быть различным по этому признаку различают адсорбционную и распределительную (различная растворимость в неподвижной жидкой фазе) хроматографию. Механизм распределения непосредственно связан с агрегатным состоянием подвижной и неподвижной фаз различают газовую или газоадсорбционную хроматографию (подвилшая фаза — газ, неподвижная — твердое тело, механизм — адсорбционный), га-зонсидкостную (подвижная фаза — газ, неподвижная — вы-сококипящая жидкость, механизм распределительный), жидкостную (подвижная и неподвижная фазы — жидкости, механизм распределительный). Два первых типа хроматографии наиболее широко применяются в современной аналитической практике, особенно для анализа сложных органических смесей. Способы размещения неподвижной жидкой фазы также разнообразны. Наиболее широко распространенный, классический способ — колоночная хроматография. Стеклянная или металлическая колонка наполняется слоем однородных по раз- [c.232]

    При идентификации углеродсодержащих примесей, а также примесей мышьяка и серы в летучих неорганических гидридах можно использовать метод термического разложения гидридов с последующим анализом характера распределения примесей между аморфной и кристаллической частями получаемого при разложении металла. Так, при термическом разложении моногермановодорода образуется два твердых продукта — аморфный германий, представляющий собой соединение, насыщенное водородом, с общей формулой (ОеНо,оп-о,1)ж и кристаллический германий (зеркальная поверхность металла на подложке). Примеси, находящиеся в моногермановодороде, также разлагаются, при этом аморфная и кристаллическая твердые фазы германия по-разному влияют на механизм и кинетику разложения примесей. В соответствии с этим преобладающая примесь будет концентрироваться в одной из твердых фаз, что можно характеризовать коэффициентом распределения О  [c.68]

    Все описанные выше модели не обладают достаточной физической конкретностью и не учитывают специфики работы пульсационных тарельчатых колонн. Поэтому ни одна из них не могла дать достаточного описания процесса массопередачи в колоннах этого типа. Тем не менее, сравнивая между собой результаты применения различных моделей, можно сделать ряд выводов о механизме работы ситчатых пульсационных колонн и о распределении полей концентраций в этих колоннах. Прежде всего, сравнивая результаты применения моделей 4 и 5 с моделью 3, можно заключить, что при достаточной нагрузке колонны по диспергированной фазе отсутствует градиент концентрации в сплошной фазе в каждой из секций колонны. Вообще говоря, известны два подхода к физическому моделированию пульсационной тарельчатой колонны. Согласно одному из них, подобная колонна может быть представлена в виде дифференциального контактора, в котором концентрация обеих фаз непрерывно изменяется как функция высоты колонны [9.5, 97, 100, 101]. Другой подход заключается в разделении колонны на ряд секций, работающих по типу смесителя — отстойника [99]. Различные модификации последнего были рассмотрены выше. Рассмотрим подробнее модель дифференциального контактора, предложенную в работе [102] и разработанную Смутом и Боббом [97]. В основу этой модели положены следующие предположения  [c.260]


Смотреть страницы где упоминается термин Распределение между двумя фазами, механизм: [c.71]   
Жидкостная колоночная хроматография том 3 (1978) -- [ c.18 ]




ПОИСК







© 2025 chem21.info Реклама на сайте