Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клетки в структура хроматина

    Другие изменения касаются радиационных влияний на ядерную. мембрану и хроматин. На структуре хроматина сказываются депротеинизация участков ДНК и активация ДНКаз как следствие нарушения проницаемости ядерной мембраны. Облучение может также инактивировать ферменты, участвующие в репарации повреждений молекулы ДНК. Эти и другие повреждения как на уровне ДНК, так и хроматина в конечном счете выражаются в изменениях белкового синтеза, прохождения фаз клеточного цикла, в образовании хромосомных аберраций, увеличении частоты мутаций в клетках, нарушении систем регуляции и гибели клетки. [c.436]


    Для большинства эукариотических клеток, как и клеток прокариот, стадия инициации транскрипции является основной, главной регуляторной точкой экспрессии активности генов. Тем не менее имеются существенные различия во-первых, место процессов транскрипции (в ядре) и трансляции (в цитоплазме) во-вторых, активирование транскрипции у эукариот связано с множеством сложных изменений структуры хроматина в транскрибируемой области в-третьих, в эукариотических клетках превалируют положительные регуляторные механизмы над отрицательными. [c.538]

    Гигантские молекулы ДНК в ядрах эукариотических клеток чрезвычайно плотно упакованы в хроматиновую структуру, которая представляет собой иерархическую систему сверхспирализации нуклеосомно-связан-ной ДНК. Образование спиралей высших порядков, которые описывались в гл. 4, несомненно, делают ДНК недоступной для действия транскрипционного аппарата клетки. Процесс транскрипции связан с определенными изменениями в структуре хроматина. [c.220]

    Клетки эмбриона имеют много общего с компьютером, поскольку постоянно получают информацию о своем расположении в данный момент и объединяют эту информацию с поступившей ранее для того, чтобы на каждой стадии развития действовать соответствующим образом Изучение дрозофилы генетическими методами показало, что в образовании и поддержании основного плана строения тела участвует относительно небольшое число (порядка 100) генов, кодирующих главные регуляторные белки, взаимодействующие между собой. В любом многоклеточном организме подавляющее большинство генов (и жизненно важных, и тканеспецифичных), вероятно, регулируются посредством сложных контролирующих цепочек, исходящих от генов главных регуляторных белков. Если в регуляции генов эукариот центральную роль играют механизмы, сильно отличающиеся от бактериальных (например, механизмы, зависящие от прямого наследования структуры хроматина), можно ожидать, что именно эти механизмы контролируют некоторые гены главных белков-регуляторов. [c.220]

    В действительности результаты таких экспериментов свидетельствуют о том, что вирусный сегмент содержит второй энхансер, который специфически активируется в клеточной линии 1. В сходных экспериментах показано, что тканеспецифический контроль активности генов может осуществляться путем взаимодействия многих регуляторных факторов. Так, для активации экспрессии генов стероидами требуется обычно, чтобы реагирующая клетка имела рецептор стероидов и чтобы структура хроматина вокруг потенциально регулируемого гена была открытой -состояние, которое достигается при действии других факторов транскрипции. [c.457]


    Разные формы бактерий имеют, по А. А. Имшенецкому, различный тип ядерного аппарата. Одни бактерии имеют диффузное ядро— у них ядерное вещество находится в дисперсном состоянии, у других в протоплазме содержатся отдельные зерна хроматина, участвующие в образовании сетчатых или осевых нитей, у третьих хроматиновые зерна собираются вместе и образуют обособленное ядро. По-видимому, более примитивные формы имеют диффузное ядро, а более сложные формы дают определенную ядерную структуру. Ядро бактериальной клетки только изредка можно наблюдать непосредственно под микроскопом. [c.250]

    Синтез гистонов в клетке строго скоординирован с синтезом ДНК если синтез ДНК подавляется, синтез гистонов падает примерно на 90%. Остается так называемый базальный уровень синтеза. Возможно, он необходим для восстановления структуры хроматина на репарированной ДНК, для замены деградированных гистонов или дпя синтеза определенных субфракций. Среди молекул мРНК, кодирующих гистоны, лишь часть несет на З -конце Поли (А). Возможно, полиаденилирование влияет на время жизни Гистоновых матриц и соответственно на уровень и избирательность базального синтеза. [c.237]

    Структуру эукариотических хромосом (хроматина) изучают с помощью различных подходов, в первую очередь биохимических и электронно-микроскопических. Биохимические исследования обычно основаны на выделении препарата ядер. Ядро — самая крупная и тяж лая (по плотности) органе чла клеток. Препарат ядер довольно легко получить. Для этого ткань или клетки разрушают и центрифугируют, а затем очищают ядра, пропуская их через плотный раствор сахарозы с помощью повторного центрифугирования. Полученные ядра стабилизируют в процессе выдатения двухвалентными катионами (Са- или Mg- , полиаминами, а также 0,15. М Na l, т. е. близкой к физиологической ионной силой. Такой препарат ядер сохраняет многие прижизненные свойства, в том числе способность синтезировать РНК и ДНК- [c.234]

    Разработана остроумная генетическая система, позволяющая заменять в клетках дрожжей нормальные гены на их модифицированные аналоги с помощью генно-инженерных манипуляций. В результате в клетке синтезируются измененные белки. Таким образом было показано, что гистоны Н2А и Н2В дрожжей можно лишить 10—30 концевых аминокислот и что это не влияет на сборку нуклеосом и структуру хроматина и вообще на жизнеспособность клеток. Это особенно странно, если учесть высокую консервативность аминокислотных последовательностей гистонов. Возможно, Ы-концевые участки нуклеосомных гистонов необходимы не для сборки нуклеосом, а для другой цели, например для транспорта гнстонов из цитоплазмы в ядро. [c.241]

    В центральной части клетки расположен хроматин, который прижизненно слегка окрашивается слабым раствором метиленового синего, после фиксации реактивом Фельгена. Имея сетчатую структуру, хроматин при делении клетки перешнуровывается врастающей от периферии перегородкой. Кроме хроматина, после покраски в клетке просматриваются небольшие тельца белкового происхождения — волютин (окрашивается метиленовым синим в красный цвет). [c.138]

    В настоящее время многочисленные факты приводят нас к представлению о том, что разрыв хромосомы есть результат взаимодействия сложных процессов, возникающих при облучении гетерогенных структур клетки, развивающихся во времени и по мере развития корректируемых репарационными процессами в активно метаболизирующей клетке. Процесс, возникающий при облучении клетки, прежде всего идет в сфере межмолекулярных сил, нарушает нативную надмолекулярную структуру хроматина — этого сложного белково-липидонуклеинового комплекса, из которого образованы хромосомы. Эта мысль и легла в основу доклада Стручкова, прекрасно согласуясь с уже опубликованными работами нашей лаборатории по изменению эласто-вязкостных свойств надмолекулярной ДНК, изолированной из клеток тотчас после облучения (Н. Б. Стражевская и [c.195]

    СТОНЫ, так и негистоновые белки, и все эти дополнительные компоненты должны репродуцироваться. Поскольку комплект негистоновых белков, по-видимому, варьирует в зависимости от конкретного фенотипа клетки, при его репликации сохраняются особенности клеточной специфичности. Таким образом, возможность существования механизма сегрегации белков в процессе репликации ДНК имеет значение, выходящее за рамки юпроса о сборке нуклеосом. Одним из наиболее принципиальных вопросов, на который хотелось бы ответить, является вопрос о том, каким образом различные состояния структуры хроматина наследуются дочерними клетками. [c.371]

    Рассмотрим ген, который активирован (или репрессирован) путем связывания с ДНК какого-то специфического регуляторного белка и (или) каким-то изменением структуры хроматина. Каким путем это конкретное состояние будет унаследовано дуплицированными хромосомами дочерних клеток, образовавшихся в результате деления Если во время репликации все белки отделяются от ДНК, специфическое состояние должно заново устанавливаться в каждом цикле клетки. Однако возможно, что определенный механизм сегрегации используется для того, чтобы передать информацию о состоянии экспрессии генов. Одна возможность заключается в том, что специфическая структура может быть увековечена путем сегрегации и дупликации в процессе репликации ДНК. Например, образец, формально эквивалентный полунуклеосом-ной сегрегации, показан на рис. 29.20 (безотносительно к тому, используется ли такой тип сегрегации самими гистонами). Таким образом, комплекс негистоновых белков может сформироваться на ДНК, затем расщепиться на полукомплексы при репликации и вновь достроиться до полных комплексов на каждом дочернем дуплексе [c.371]


    Структура хроматина на уровне одиночных нетель очень хорошо различима и в некоторых клетках насекомых Многие клетки личинок мух вырастают до необычайно большого размера, нретерневая несколько циклов репликации ДНК, которые не сопровождаются клеточным делением. В результате они содержат в несколько тысяч раз больше ДНК. чем обычная клетка. Такие гигантские клетки называются полшлоидиыми в том случае, если число наборов хромосом у них превышает норму. Ситуация может быть и иной гомологичные хромосомные пары могут не отделяться друг от друга, а формировать единые огромные хромосомы (политенные хромосомы). Тот факт что в отдельных гигантских клетках насекомых хромосомы могут переходить из политенного в по- [c.125]

    После прохождения репликационной вилки структура хроматина переформируется путем добавления новых гистонов и других хромосомных белков к старым гистонам, унаследованным дочерней молекулой ДНК. Для предотвращения второго цикла репликации, следующего непосредственно за первым (т.е. до того, как хромосома вступит в митоз), в клетке предусмотрена блокировка. Она необходима для того, чтобы в каждой 8-фазе любая область ДНК реплицировалась только один раз. [c.143]

    Экспрессия генов группы gap и pair-rule носит временный характер, но она накладывает отпечаток на экспрессию генов полярности сегментов и гомеозисных селекторных генов экспрессия этих последних генов сохраняется, подвергаясь некоторым уточнениям в процессе дальнейшего развития и обеспечивает клетки позиционной информацией. Механизм клеточной памяти частично обеспечивается положительной обратной связью (предполагающей, что белковые продукты гомеозисных селекторных генов стимулируют транскрипцию собственных генов) и частично наследуемыми изменениями структуры хроматина. Необходимость некоторых форм запоминания позиционных значений можно продемонстрировать в экспериментах на клетках имагинальных дисков, из которых возникают наружные структуры тела взрослого организма, эти клетки сохраняют память о своих исходных назначениях в течение неопределенного числа клеточных делений. Такое поведение определяется постоянным присутствием гомеозисных селекторных генов в каждой отдельной клетке любого имагинального диска. Границы компартментов. которые, по всей вероятности, поддерживаются благодаря избирательному сшшшию отдельных клеток, делят клетки, характеризуемые различным состоянием дифференцировки, согласно экспрессии этих генов. [c.134]

    Интерфаза. На обычных постоянных препаратах интерфазное состояние ядра характеризуется нежной структурой. хроматина. Хромосомы в это время сильно деспирализованы и не выявляются. Ядра имеют округлую форму и гомогенную зернистую структуру. Из других компонентов ядра хорошо видны ядрышки. При использовании некоторых ядерных фиксаторов, например Бродского, и окрашивании препаратов гематоксилином можно увидеть с иммерсией под микроскопом (объектив 90Х) в ядре растительной клетки хроматиновую сеть и крупные зерна хроматина, образующие хромоцентры. [c.140]

    Экспериментально наиболее обоснована модель индукции и репрессии синтеза белка, предложенная Жакобом и Моно. В основе этой модели лежат экспериментальные данные, полученные при изучении клеток Е. oli. Механическое перенесение закономерностей, обнаруженных на этом объекте, на клетки эукариотов вряд ли оправданно, поскольку у них структура хроматина и регуляторные механизмы имеют ряд специфических отличий. [c.52]

    В примечании к табл. 20 приведены условия получения кристаллических волокон ДНК. Однако и в клетке та или иная степень обводненности ее компартментов или мембран, как и различия в ионной силе окружающей среды, создает условия для существования ДНК в различных конформациях, между которыми осуществляются взаимные переходы. В биологическом смысле В-форма наиболее адекватна для репликационных процессов, А-форма—для процесса транскрипции, С-форма—для упаковки ДНК в составе надмолекулярных структур хроматина и некоторых вирусов. 1аким образом, вторичная структура молекул ДНК, видимо, связана с осуществлением информационных процессов в живой природе, а именно А-форма ДНК—с переда- [c.206]

    В конце XIX в. была высказана идея о том, что нарушения в ядре клетки играют главную роль в процессе канцерогенеза. Изучая протекание митоза, Хансеманп предположил, что нормальные клетки приобретают способность к злокачественному росту из-за нарушении структуры хроматина. В начале XX в. основоположник мутационного учения Гуго де Фриз высказал мнение, что рак развивается в результате соматических мутаций. К 30-м гг. с развитием теории индуцированного мутагенеза формируется гипотеза о том, что рак — это производное точковых соматических мутаций, возникающих на генном уровне. [c.233]

    Тот факт, что белки SIR подавляют и транскрипцию, и действие НО-эндонуклеазы, свидетельствует о том, что эти белки могут вызывать изменения в структуре хроматина дрожжей, способствуя закрытию целых областей хроматина, лежащих по соседству в результате эти области становятся недоступными для самых разных ферментов. Два других наблюдения указывают на то, что в механизме действия сайленсеров есть нечто необычное. Дпя проявления репрессии необходима репликация ДНК, а последовательность, необходимая для инициации репликации (ARS), является существенной составной частью области сайленсера. Подробное изучение этого нового механизма контроля генетической активности может в какой-то мере прояснить влияние структуры хроматина на активность генов в клетках высших эукариот. [c.203]

    Н ависимо от того, каковы молекулярные механизмы упаковки определенных областей генома эукариот в гетерохроматнн, сам феномен гетерохроматизацин следует отнести к таким регуляторным процессам, которые отличают клетки эукариот от клеток бактерий. Особенность такой уникальной формы регуляции состоит в том, что в данном случае память о функциональном статусе гена хранится в виде наследуемой структуры хроматина и не обусловлена существованием стабильной обратной связи саморегулирующихся белков-регуляторов, которые в ядре могут менять свою локализацию. Неизвестно, действуют ли механизмы такого типа лишь в случае ннактнвацнн больших областей хромосомы или же они могут работать и на уровне одного или нескольких генов. Данные, приведенные ниже, позволяют предположить, что экспрессия отдельных генов часто регулируется близлежащей контролирующей последовательностью и не зависит полностью от общего хромосомного окружения. [c.210]

    Основным признаком эукариотической клетки является наличие ядра, содержащего преобладающую часть клеточной ДНК. Эта ДНК существует в виде многокомпонентного комплекса с большим набором белков, называемого храма-тином. Обычно ядро содержит несколько огромных двуспиральных молекул ДНК, каждая из которых состоит из десятков или даже нескольких сотен миллионов нуклеотидов. На определенных стадиях, предшествующих клеточному делению, хроматин конденсируется и в световой микроскоп можно наблюдать характерные структуры. Эти структуры называют хромосомами-, они были обнаружены задолго до того, как ученые узнали, что ДНК является важнейшим переносчиком наследственной информации. В конце XIX в. было открыто, что число хромосом удваивается с образованием пар идентичных хромосом непосредственно перед делением клетки. Таким образом, Томас Морган постулировал, что хромосомы являются основными структурами, отвечающими за наследственность. Хромосомная теория наследственности яъляеггся одной из основных теорий генетики — биологической дисциплины, изучающей наследственность живых организмов. Общепризнано, что хромосомы не образуются de novo при конденсации хроматина, а существуют в виде определенных органелл во все время жизни клетки, правда в довольно диффузной форме. [c.24]


Смотреть страницы где упоминается термин Клетки в структура хроматина: [c.251]    [c.136]    [c.389]    [c.251]    [c.136]    [c.196]    [c.208]    [c.203]    [c.210]    [c.221]    [c.158]    [c.146]    [c.179]    [c.412]    [c.218]    [c.102]    [c.283]    [c.221]    [c.134]    [c.118]    [c.234]    [c.29]    [c.540]   
Молекулярная биология клетки Сборник задач (1994) -- [ c.134 ]




ПОИСК







© 2024 chem21.info Реклама на сайте