Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтез элонгация

    При наличии этих условий возможно начало процесса - инициация. Следующий этап - синтез цепи РНК элонгация) под действием РНК-полимера-зы происходит так  [c.56]

    Возможно существование каких-то регуляторных белков или малых рибонуклеопротеидов, которые взаимодействуют с транслирующей рибосомой и избирательно останавливают или затрудняют элонгацию в определенных местах. Известен пример таких специфичных репрессоров элонгации в эукариотах это рибонуклеопротеид-ная частица, содержащая 7S РНК частица узнает особую N-концевую гидрофобную последовательность образующегося полипептида на транслирующей рибосоме, присоединяется к рибосомам и останавливает элонгацию до тех пор, пока рибосома не вступит во взаимодействие с мембраной эндоплазматического ретикулума (см. В.IX.2). Не исключено, что подобные механизмы используются для регуляции скорости элонгации на других стадиях синтеза белка, например, на определенных стадиях сворачивания белка или сборки белка на транслирующей рибосоме. [c.213]


    В местах р-зависимой терминации РНК-полимераза делает паузы в отсутствие р-фактора, поэтому считается, что роль р-фак-тора заключается в вытеснении РНК из транскрипционного комплекса в местах пауз. Рассматриваются две модели. Согласно одной из них. фактор движется по синтезируемой РНК. а в местах пауз догоняет РНК-полимеразу и вытесняет РНК-продукт. Другая модель основана на том. что пирофосфат подавляет НТФазную активность р-фактора. Согласно этой модели, р-фактор движется за РНК-полимеразой без отставания, но при нормальной скорости элонгации ингибируется пирофосфатом, высвобождающимся прн синтезе РНК- Активация р-фактора происходит лишь в местах пауз, где синтез цепи РНК временно останавливается, что приводит к прекращению освобождения пирофосфата. [c.157]

    Фундаментальный факт в наших знаниях по рибосомному синтезу белка состоит в том, что полипептидная цепь строится путем последовательного роста от Н-конца к С-концу. В течение элонгации растущий С-конец остается всегда ковалентно фиксированным в пептидилтрансферазном центре на рибосоме, а Н-конец свободен. Естественно допустить, что по мере синтеза белка на рибосоме должно происходить также его сворачивание, и что сворачивание должно начинаться с его Ы-концевой части. [c.272]

    Процесс синтеза РНК можно разделить на четыре основные стадии 1) связьшание РНК-полимеразы с промотором, 2) начало синтеза цепи РНК (инициация), 3) рост цепи РНК (элонгация), 4) завершение синтеза цепи РНК (терминация). [c.619]

    Таким образом, основные стадии процесса у эукариот и прокариот -инициация, элонгация и терминация - одни и те же, начало синтеза РНК так же включает основания А или Г. Отличия касаются ферментов и транскрибируемых последовательностей. [c.57]

    Следующая стадия, инициация, требует наличия субстратов РНК-полимеразы, нуклеозидтрифосфатов и заключается в образовании первых нескольких звеньев цепи РНК- Первый нуклеотид входит в состав цепи, сохраняя свою трифосфатную группу, а последующие присоединяются к 3 -ОН-группе предыдущего с освобождением пиро юсфата. На стадии инициацни РНК-продукт связан с матрицей и РНК-полн.меразой непрочно и с высокой вероятностью может освобождаться из комплекса. В этом случае РНК-полимераза, не покидая промотора, снова инициирует РНК- Такой синтез ДИ-, три- и более длинных олигонуклеотидов называют абортивной инициацией в противоположность продуктивной (т.е. завершающейся образованием полноценного РНК-продукта) инициации. Когда РНК-продукт достигает критической длины (от 3 до 9 нуклеотидов на разных промоторах), абортивная инициация полностью прекращается, транскрибирующий комплекс стабилизируется и уже не распадается до тех пор, пока синтез. молекулы РНК не будет доведен до конца. Примерно в этот же мо.мент, который считается концом инициации и началом элонгации, ог РНК-полимеразы отделяется а-субъединица. [c.138]


    Белоксинтезирующая система всех клеток является Многокомпонентной. Рибосомы играют в этой системе центральную роль, поскольку они организуют весь процесс в целом и катализируют отдельные реакции. Трансляция (собственно синтез белка) подразделяется на три стадии инициацию — начало белкового синтеза, элонгацию— процесс роста полипептидной цепи и стадию тер-минации — освобождение готового полипептида из поли-рибосомного комплекса. [c.285]

    Такова в общих чертах схема синтеза белка in vivo некоторые детали, например роль белковых факторов элонгации, опущены. Очевидно, что синтез белка — очень сложный процесс его основу составляет активация карбоксильной группы с последующим упорядоченным присоединением аминокислот на наирав-ляющей (организующей) матрице, которая делает практически невозможным образование неправильной последовательности или другие побочные реакции. Важное значение этих соображений станет ясным в дальнейшем, прн кратком рассмотрении проблем химического синтеза белков. Тем не менее, имея представление о синтезе белка in vivo, можно оценить фармакологическое действие лекарств или антибиотиков, которые нарушают белковый синтез. Такие антибиотики, вообще говоря, токсичные соединения, поскольку нарушают синтез белка и у болезнетворных бактерий, и у пациента, однако и ош1 могут оказаться весьма полезными терапевтическими препаратами. [c.60]

    ДО ADP и фосфата. Образованный таким образом комплекс характеризуется практически неограниченной процессивностью синтеза. Видимо АТР обеспечивает необрати.мость присоединения к матрице (до конца копирования). Для элонгации (удлинения затравки) тоже необходим АТР, но лишь в качестве аллостерического эффектора (на этой стадии его можно заменить негидролизуемым аналогом), позволяющего ДНК-полимеразе чувствовать состояние энергетического баланса клетки и проводить репликацию лишь при условии достаточного энергообеспечения. При опти.мальных условиях скорость синтеза ДНК холоферментом ДНК-полимеразы П1 in vitro составляет около 1000 нуклеотидов в секунду, что соответствует скорости репликации in vivo. [c.50]

    Похожая добавочная N-концевая последовательность оказалась свойственной и растущим цепям ряда бактериальных белков, выводимых (экспортируемых) из цитоплазмы (см. табл. 3). В случае грамотрицательных бактерий этот экспорт белков происходит, либо в периплазматическое пространство (например, щелочная фосфатаза, мальтозосвязывающий белок, арабинозосвязывающий белок, пенициллиназа), либо далее во внешнюю мембрану (липопротеид внешней мембраны, X-рецептор). Начало синтеза экскретируемых белков приводит, по-видимому, к взаимодействию их гидрофобной N-концевой последовательности с внутренней цитоплазматической мембраной бактериальной клетки, так что они далее синтезируются на мембраносвязанных рибосомах. В течение элонгации (или в некоторых случаях после нее) может происходить отщепление N-концевой последовательности. По завершении синтеза, после терминации трансляции, готовый белок проваливается в периплазматическое пространство и далее, в зависимости от гидрофобности (гидрофильности) своей поверхности, либо остается в пери-плазматическом пространстве как водорастворимый белок, либо интегрируется во внешнюю мембрану. Здесь, как видно, имеется большая аналогия с ситуацией для секретируемых белков в эукариотических клетках. [c.280]

    Элонгация (удлинение) цепи ДНК осуществляется ДНК-зависи-мыми ДНК-полимеразами. В этой реакции участвуют также и вспомогательные белки, наборы которых могут различаться в разных системах и на разных этапах репликации одного и тогд же генома. В частности, различны эти наборы при синтезе ДНК на однонитевой матрице (или, как говорят, при репарационном синтезе) и на двухнитевой матрице (при синтезе с вытеснением цепи). В первом случае важным вспомогательным участником реакции являются ДНК-связывающие белки, которые превращают матрицу в дезоксирибонуклеопротеид. При этом исчезают многие из элементов вторичной структуры матрицы, она как бы выпрямляется , что облегчает поступательное и процессивное движение ДНК-полимеразы. Сходную роль — помощь ДНК-полимеразе в преодолении препятствий , в частности шпилечных структур на матрице,— могут играть и другие дополнительные (в том числе и вирус-специфические) репликационные белки. [c.266]

    Еще разнообразнее наборы белков, участвующие в синтезе ДНК на двухнитевых матрицах. В этом случае поми.мо уже перечисленных, требуются, в частности, хеликазы, способствующие расплетанию родительского дуплекса в области репликационной вилки (см. гл. И), набор с рментов, необходимых для синтеза отстающей цепи (праймазы ферменты, удаляющие РНК-затравку ДНК-лигазы, сшивающие фрагменты Окадзаки), а также — часто — топоизомеразы, снимающие избыточное внутримолекулярное напряжение, возникающее в результате расплетания матричного дуплекса. В обще.м, процесс элонгации при репликации вирусных ДНК-геномов не отличается принципиально от этого процесса при синтезе клеточных ДНК- Единственно, что следует отметить,— это использование (в некоторых системах) вирус-специфических репликационных белков, которые по своей функции аналогичны белка.м, и.меющимся в незараженной клетке. [c.266]


    На следующей стадии в качестве затравки выступает уже (—) - strong-stop ДНК элонгация этой затравки приводит к синтезу (—) цепи ДНК, в которой, впрочем, может отсутствовать комплемент района ги5, поскольку соответствующий участок (+) матрицы был разрушен РНКазой Н (рис. 160). [c.311]

    После окончания компьЕггерного эксперил1ента происходит обработка полученных результатов и формируются выходные данные среднее время элонгации, средняя населенность, скорость синтеза fэффективностьJ. [c.162]

    Кислый аминополисахарид гепарин [М> 10 ООО) известен в качестве антикоагулянта крови. Кроме того, он применяется в биохимии как ингибитор рибонуклеаз. Это его качество, по-видимому-отражает некоторое сходство полимера, содержащего две-три суль, фогруппы на каждую дисахаридную структурную единицу, с РНК-Две эти особенности определили использование гепарина в качеств, лиганда для аффинной хроматографии факторов коагуляции крове и (особенно широко) для очистки белков, взаимодействующих и нуклеиновыми кислотами (полимераз, обратной транскриптазы, рес стриктаз, факторов инициации и элонгации белкового синтеза и др.). Кроме того, иммобилизованный гепарин связывает липопротеид-липазы и некоторые липопротеиды. Гепарин-агароза выпускается всеми упомянутыми фирмами-поставщиками аффинных сорбентов, кроме Bio-Rad . [c.370]

    Образование полипептидных связей на рибосомах обычно подразделяют на три процесса инициацию, элонгацию и терминацию [98]. Синтез белка начинается с инициирующего кодоиа чаще всего им является кодон метионина AUG. Кодон GUG, расположенный надлежащим образом в цепи мРНК, также может служить инициирующим кодоном. В этом случае он детерминирует метионин, а не валин. Для распознавания стартового сигнала важную роль может играть также последовательность оснований, предшествующая инициирующему кодону. На это указывает тот факт, что кодоны AUG и GUG встречаются не только в точках инициации. [c.231]

    В этом же положении обнаруживаются геиы, ответственные за синтез рибосом-иого белка S7 и факторов элонгации EF-G и EF-Tu. Считают, что все они являются частями одной и той же транскрипционной единицы [116а]. [c.240]

    После того как была идентифицирована ДНК-полимераза Г (разд. А, 3, а), считалось, что обнаружен основной фермент, обеспечивающий элонгацию цепи при синтезе ДНК. Однако открытие amber-мутанта Е. соН, у которого отсутствовал ген, кодирующий полимеразу Г (ген polA рис. 15-1), а синтез ДНК тем не менее протекал нормально стимулировало интенсивный поиск новых ДНК-полимераз. Были обнаружены два других фермента — ДНК-полимераза II (ген polB) ff ДНК-полимераза III, содержание которых не превышало 25% содержания ДНК-полимеразы I [195, 196]. По своим свойствам оба фермента Напоминали ДНК-полимеразу I, однако в некоторых отношениях эти ферменты значительно различались. [c.274]

    Если тот факт, что репликация ДНК У Е. соИ начинается процессом специфической инициации, за которым следует элонгация вдоль хромосомы в двух направлениях, установлен вполне надежно, то вопросы, касающиеся терминирования процесса репликации, изучены значительно хуже. В результате ряда экспериментов было установлено, что терминация каким-то образом запускает синтез специфической мРНК и белка, необходимых для деления клетки [200]. Таким образом, клеточный цикл состоит как бы из серий последовательно протекающих событий, каждое из которых включает следующее событие. [c.276]

    Репрессор представляет собой обычно димер из двух идентичных полипептидных цепей, ориентированных во взаимно противоположных направлениях. Репрессоры физически препятствуют РНК-полимеразе присоединиться к ДНК в промоторном участке (место связывания ДНК-зависимой РНК-полимеразы-фермента, катализирующего синтез мРНК на ДНК-матрице) и начать синтез мРНК. Предполагают, что репрессор препятствует только инициации транскрипции и не оказывает влияния на элонгацию мРНК. [c.217]

    Кроме секретируемых белков, растущие полипептидные цепи ряда встроенных в мембрану белков также характеризуются временной сигнальной N-концевой последовательностью. Одним из первых изученных примеров такого рода был гликопротеид вируса везикулярного стоматита, который вместе с хозяйской мембраной участвует в построении вирусной оболочки. Этот белок, как оказалось, синтезируется с N-концевой сигнальной последовательностью, очень похожей на таковую секретируемых пребелков сигнальная последовательность необходима для присоединения транслирующей рибосомы к мембране эндоплазматического ретикулума дальнейщий синтез белка идет, таким образом, на мембраносвязанных рибосомах в ходе элонгации N-концевая последовательность из 16 аминокислотных остатков отщепляется в мембране. Другими словами, все это не отличимо от ситуации в случае водорастворимых секретируемых белков. Однако, в отличие от секретируемых белков, здесь окончательный продукт после термина- [c.280]

    Использованию ферментов в качестве катализаторов для реакции соединения пептидов и в настоящее время уделяется большое внимание. Катализ образовании пептидов при биосинтезе белка осуществляет фермент перти-дилтрансфераза. Так как этот фермент взаимодействует с протеиногенными аминокислотами независимо от природы боковой цепи, теоретически он представляет собой идеальный катализатор для реакций целенаправленного синтеза пептидов. Пептидилтрансфераза в сложной рибосомной системе структурно тесно связана со всеми другими составляющими, кроме того, на стадии элонгации во время биосинтеза белка одновременно действуют также другие факторы. Поэтому вероятность того, что выделенный из естественной среды фермент вообще будет способен к катализу реакции синтеза пептидов, очень мала. Никакого выхода в практику пептидного синтеза не получил также изученный Липманном механизм биосинтеза пептидных антибиотиков, который проходит с участием определенных ферментов. [c.166]

    Другой пример регулируемых дифференциальных изменений в скорости элонгации был дан Дж. Планом и сотр. эстроген, введенный цыплятам, ведет к индуцированию синтеза вителлогенина в печени с начальной скоростью элонгации, равной примерно 9 остаткам в секунду в то же время скорость элонгации суммарных белков печени снижается с 7 до 4,5 остатков в секунду через 2 дня после инъекции и в последующее время скорость элонгации всех белков печени составляет от 2 до 3 остатков в секунду. [c.213]

    Надо сказать, что вне фазы (рамки) считывания триплеты UAA, UAG и UGA в пределах кодирующей последовательности мРНК встречаются существенно чаще, чем в фазе считывания, где имеется, как правило, всего один терминирующий кодон на всю кодирующую последовательность. Поэтому обычно случайный сдвиг рамки в процессе элонгации не может привести к синтезу очень длинного неправильного полипептида и чаще всего приводит к скорой терминации этой неправильной трансляции. В некодирующих участках мРНК, включая межцистронные участки полицистронных РНК, частота терминирующих триплетов обычно также высока. [c.265]

    С другой стороны, на мембране эндоплазматического ретикулума эукариотических клеток имется специальный рецептор, воспринимающий сигналузнающую частицу в комплексе с рибосомой. Рецептор оказался белком с молекулярной массой 72000 дальтон, частично погруженным в мембрану, в то время как основной его домен обращен в цитоплазму и служит непосредственным причалом для сигналузнающей частицы. Он получил название причального белка . Взаимодействие ассоциированной с рибосомой сигналузнающей частицы с причальным белком мембраны снимает запрет с элонгации синтез пептида возобновляется. Теперь, однако, растущий пептид торчит уже не в водную фазу, а непосредственно в мембрану дальнейшая элонгация приводит к его погружению и вхождению в мембрану прямо из рибосомы, минуя водное окружение цитоплазмы. Происходит так называемая ко-трансляционная транслокация полипептида через мембрану. Более детальные механизмы вхождения полипептида в мембрану и, в случае секреторных белков, его прохождения через нее не известны. [c.283]


Смотреть страницы где упоминается термин Синтез элонгация: [c.271]    [c.278]    [c.320]    [c.158]    [c.233]    [c.206]    [c.237]    [c.276]    [c.248]    [c.252]    [c.265]    [c.622]    [c.56]    [c.134]    [c.209]    [c.211]    [c.216]    [c.218]    [c.236]    [c.278]    [c.278]   
Молекулярная биология клетки Сборник задач (1994) -- [ c.12 , c.13 , c.14 ]




ПОИСК





Смотрите так же термины и статьи:

Элонгация



© 2024 chem21.info Реклама на сайте